llllllllllllllllllll
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

COMPUTABII.ITY
AND LOGIC

Daniel E.Cohen

Mathematics and its Applications
Series Editor: G. M. BELL, Professor of Mathematics,
King’s College London (KQC), University of London

Statistics and Operational Research
Editor: B. W. CONOLLY, Professor of Operational Research,
Queen Mary College, University of London

Mathematics and its applications are now awe-inspiring in their scope, variety and depth. Not
only is there rapid growth in pure mathematics and its applications to the traditional fields of the
physical sciences, engineering and statistics, but new fields of application are emerging in
biology, ecology and social organisation. The user of mathematics must assimilate subtle new
techniques and also learn to handle the great power of the computer efficiently and
economically.

The need for clear, concise and authoritative texts is thus greater than ever and our series will
endeavour to supply this need. It aims to be comprehensive and yet flexible. Works surveying
recent research will introduce new areas and up-to-date mathematical methods. Undergrad-
uate texts on established topics will stimulate student interest by including applications relevant
at the present day. The series will also include selected volumes of lecture notes which will
enable certain important topics to be presented earlier than would otherwise be possible.

In all these ways it is hoped to render a valuable service to those who learn, teach, develop and
use mathematics.

Mathematics and its Applications
Series Editor: G. M. BELL, Professor of Mathematics, King’s College
(KQC), University of London

Artmann, B.

Balcerzyk, S. & Joszefiak, T.
Balcerzyk, S. & Joszefiak, T.
Baldock, G.R. & Bridgeman, T.
Ball, M.A.

de Barra, G.

Bell, G.M. and Lavis, D.A.
Berkshire, F.H.

The Concept of Number
Commutative Rings

Noetherian and Krull Rings
Mathematical Theory of Wave Motion

Mathematics in the Social and Life Sciences: Theories, Models and Methods

Measure Theory and Integration
Co-operative Phenomena in Lattice Models Vols. I & II
Mountain and Lee Waves

Berry, J.S., Burghes, D.N., Huntley, I.D., James, D.J.G. & Moscardini, A.O.

Mathematical Modelling Courses

Berry, J.S., Burghes, D.N., Huntley, 1.D., James, D.J.G. & Moscardini, A.O.

Mathematical Methodology, Models and Micros

Berry, J.S., Burghes, D.N., Huntley, I.D., James, D.J.G. & Moscardini, A.O.

Burghes, D.N. & Borric, M.
Burghes, D.N. & Downs, A.M.
Burghes, D.N. & Graham, A.

Burghes, D.N., Huntley, I. & McDonald, J.

Burghes, D.N. & Wood, A.D.

Butkovskiy, A.G.

Butkovskiy, A.G.

Cao, Z-Q., Kim, K.H. & Roush, F.W.
Chorlton, F.

Chorlton, F.

Cohen, D.E.

Crapper, G.D.

Cross, M. & Moscardini, A.O.
Cullen, M.R.

Dunning-Davies, J.

Eason, G., Coles, C.W. & Gettinby, G.

Exton, H.
Exton, H.
Exton, H.

Teaching and Applying Mathematical Modelling
Modelling with Differential Equations

Modern Introduction to Classical Mechanics and Control
Introduction to Control Theory, including Optimal Control
Applying Mathematics

Mathematical Models in the Social, Management

and Life Sciences

Green’s Functions and Transfer Functions Handbook
Structural Theory of Distributed Systems

Incline Algebra and Applications

Textbook of Dynamics, 2nd Edition

Vector and Tensor Methods

Computability and Logic

Introduction to Water Waves

Learning the Art of Mathematical Modelling

Linear Models in Biology

Mathematical Methods for Mathematicians, Physical Scientists
and Engineers

Mathematics and Statistics for the Bio-sciences
Handbook of Hypergeometric Integrals

Multiple Hypergeometric Functions and Applications
g-Hypergeometric Functions and Applications

Series continued at back of book

COMPUTABILITY
AND LOGIC

DANIEL E. COHEN, B.A., M.A., D.Phil.
Reader in Pure Mathematics
Queen Mary College, University of London

ELLIS HORWOOD LIMITED
Publishers - Chichester

Halsted Press: a division of
JOHN WILEY & SONS

New York - Chichester - Brisbane - Toronto

First published in 1987 and
Reprinted and issued for the first time in paperback in 1989

ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street,
Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of the ancient Market
Cross, Chichester.

Distributors:

Australia and New Zealand:
JACARANDA WILEY LIMITED
GPO Box 859, Brisbane, Queensland 4001, Australia

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada

Europe and Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester, West Sussex, England

North and South America and the rest of the world:
Halsted Press: a division of

JOHN WILEY & SONS

605 Third Avenue, New York, NY 10158, USA

© 1987 D. E. Cohen/Ellis Horwood Limited

British Library Cataloguing in Publication Data

Cohen, Daniel E.

Computability and logic. — (Mathematics and its applications).
1. Machine theory

I. Title II. Series

519.4 QA267

Library of Congress Card No. 87-4088

ISBN 0—7458—0034—3 (Ellis Horwood Limited —Library Edition)
ISBN 0—7458—0729—1 (Ellis Horwood Limited —Student Edition)
ISBN 0—470—20847—3 (Halsted Press—Library Edition)

ISBN 0—470—21549—6 (Halsted Press—Paperback Edition)

Phototypeset in Times by Ellis Horwood Limited
Printed in Great Britain by Hartnolls, Bodmin

COPYRIGHT NOTICE

All Rights Reserved. No part of this Eublication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-copying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross
House, Cooper Street, Chichester, West Sussex, England.

Table of Contents

Preface. 9

Notation e 13

Part I COMPUTABILITY

1 Epimenides, Godel, Russell, and Cantor

1.1 Epimenides 17
1.2 Godel. . ..o 18
13 Russell 18
1.4 Cantoro e 19

2 Informal theory of computable functions

21 Functionso e 20
2.2 Strings e 22
2.3 Computable functions, listable sets and decidable sets. 23
2.4 Universal functions and undecidablesets 29
25 Rice’stheorem 32

3 Primitive recursive functions

3.1 Primitive recursionii ., 36
3.2 Bounded quantifiers and minimisation. 41
3.3 Examples using bounded minimisation. 43
3.4 Extensions of primitive recursion 45
3.5 Functionsof onevariable 47
3.6 Some functions which are not primitive recursive 51
3.7 Justifying definitions by primitive recursion. 57

4 Partial recursive functions
4.1 Recursive and partial recursive functions 60
4.2 Recursive and recursively enumerablesets 63

6 Table of contents

5 Abacus machines

5.1 Abacusmachinesoveveieiriennnennnnnns 67
5.2 Computing by abacusmachines 69
5.3 Partial recursive functions. « v « v v v v v vt i ittt i a e 73
5.4 Register programs. « « o v o v oo v v v v onensnonsnsnsnss 76

6 Turing machines
6.1 Turingmachines . . . v v v vt vt it innnenenennnnns 80
6.2 Computing by Turingmachinescvvvueuenns 88

7 Modular machines

7.1 Turingmachines.ottt inienrnss 95
7.2 Modular machineS. « « o v v v e e o v ettt o oeeeonneeeens 96
7.3 Partial recursive functions and modular machines. 98
7.4 Kleene’s Normal FormTheoremcovveeeeeenn. 99

8 Church’s Thesis and Godel numberings
8.1 Church’sThesis + ¢ oo v v vttt ennnsss 103

9 Hilbert’s tenth problem

9.1 Diophantine sets and functions. « « v v v v v v v v v v vt v e n s 111
9.2 Coding computations. « v v e v v et vinv e snnsnns 115
9.3 Removaloftherelation <.ovvvvinenn., 118
9.4 Exponentiation. « « v v v v v v vt v ittt 119

9.5 Gdodel’s sequencing function and min-computable functions . 123
9.6 Universal diophantine predicates and Kleene’s Normal
FormTheorem....... .ottt 125

10 Indexings and the recursion theorem

10.1 PairingS . o o v v oo v v nevnenennenenensnsnsnnas 129

102 Indexings. « « o v v v v v vt iiiieenensnsnensnnnnss 130

10.3 The recursion theorem and its applications 132

10.4 Indexings Of r.€. SEtS. + ¢ v v v v vt et v et e nveoenennns 137

10.5 The diophantineindexingcovvviii . 139
Part II LOGIC

11 Propositional logic
I1.L1 Background + . v v vt v ittt ii ittt i nnsnnnnns 145

Table of contents 7

11.2 The language of propositional logic 147
113 Truth ..o o 155
11.4 Proof 158
1.5 Soundness L 167
11.6 Adequacy 168
11.7 Equivalence 170
11.8 Substitution 172

12 Predicate logic

12.1 Languages of first-order predicate logic 174
122 Truth ..o 182
123 Proof 185
12.4 Soundness o 189
125 Adequacy 191
12.6 Equality o 197
12.7 Compactness and the Lowenheim-Skolem theorems 199
12.8 Equivalence o 201

13 Undecidability and incompleteness

13.1 Some decidable theories 203
13.2 Expressible sets and representable functions 206
13.3 The maintheorems 212
13.4 Furtherresults, 215

14 The natural numbers under addition

14.1 The orderrelationonQ 223
14.2 The natural numbers under addition 225
Notes 230
Furtherreading 234
Index of special symbols 237

To the memory of my parents,
Amy and Leonard Cohen

Preface

The theory of computable functions could be described as the pure mathe-
matics of computer science.

Mathematicians are finding more and more that they need to use
computers (not only for their number-crunching power, which is how
mathematicians found them helpful originally). Courses involving the
practicalities of computing are becoming common in mathematics degrees. I
feel strongly that a course explaining the nature and behaviour of compu-
table functions should be an option in any well-designed mathematics
degree.

The Incompleteness and Undecidability Theorems of mathematical
logic are high points in our understanding of the scope and limits of
mathematical reasoning, and their proofs should also be available in a
course which is an option for a mathematics degree. The Incompleteness
Theorem is one which many students will have vaguely heard of; it says
(roughly) that for any reasonable set of axioms for the natural numbers N
there will be a sentence which cannot be proved from these axioms but is
nonetheless true in N. The Undecidability Theorem says that there is no
mechanical process for obtaining all provable sentences. It could be
regarded as saying that mathematics is essentially a creative process which
cannot be mechanised (even theoretically, let alone practically). As such, it
could be regarded as justifying the existence of mathematicians, which is
surely something any student of mathematics should be aware of!

This book is a text for a course dealing with these matters. It is written by
a pure mathematician, and is intended for mathematicians and theoretical
computer scientists. Because I wrote it for mathematicians, I have not
assumed any knowledge of programming. Most books on computability are
intended primarily for computer scientists, and so assume a detailed know-
ledge of programming. Occasionally I mention some aspects of program-
ming. This is just to help the reader who has some slight knowledge (no
more, usually, than BASIC for a microcomputer) and can be ignored by
other readers.

10 Preface

The amount of mathematical knowledge needed as a prerequisite for this
book is slight. The algebra of sets, the principle of induction, and a precise
definition of a function would be enough. As often happens with material
which does not have many prerequisites, the level of mathematical maturity
needed is quite high, and the intended readers are final-year undergraduates
or beginning postgraduates.

There are several novelties in the treatment in this book, notably in the
types of machines used and the proofs and uses of results about diophantine
properties. In particular, the discussion of diophantine properties is carried
through in a way which permits it to be used for the proofs of major theorems
without needing a detailed discussion of Turing machines and modular
machines.

The first chapter introduces various aspects of self-reference, a theme
which plays a major part in the key results. Chapter 2 is about the informal
theory of computable functions; it turns out that most of the results we
encounter later can be proved using only a very intuitive notion of
computability.

Chapters 3 and 4 formalise the theory, discussing primitive recursive and
partial recursive functions.

The next three chapters look at various machines. Chapter S contains the
first innovation, the use of abacus machines. These are just a variant of what
are often called unlimited register machines. Because they are nicely
structured, they are particularly easy to deal with. Chapter 6 considers
Turing machines. Chapter 7 contains the second innovation, the use of
modular machines. These are somewhat peculiar objects, but because they
simultaneously act as a numerical coding of Turing machines and as
machines in their own right, they provide very straightforward proofs of
some major results (such as Kleene’s Normal Formal Theorem). We finally
discover that the sets of functions computable by each of these three types of
machines coincide with the partial recursive functions.

Having proved this, in Chapter 8 we review the evidence for Church’s
Thesis which claims that the intuitively computable functions are exactly the
partial recursive functions.

Chapter 9 is about Hilbert’s Tenth Problem which asks if we can decide
whether or not a polynomial with integer coefficients has integer solutions.
Here the recent simplification due to Jones and Matijasevic is used. Kleene’s
Normal Form Theorem is given another proof using the results of this
chapter, and the major Incompleteness and Undecidability Theorems of
later chapters are also given several proofs, both conventional ones and also
ones using the results of this chapter. This is the first time this approach has
been used in a text at this level.

Chapter 10 is more technical. It covers aspects of enumerating the
computable functions, including the important s—m-n and Recursion
Theorems.

The remaining chapters are about logic. Chapter 11 is about proposi-
tional logic, and Chapter 12 about the deeper predicate logic. These
chapters form a detailed introduction to mathematical logic. Chapter 13

Preface 11

contains the main Incompleteness and Undecidability Theorems, and
Chapter 14 shows that, whereas number theory is undecidable, the theory of
the natural numbers using addition (but not multiplication) is decidable.

This text had its origins in a course I have taught for some years at Queen
Mary College, London University. This was a one-semester (33 hours)
course on computability and logic given to final-year undergraduates who
had already had a course in logic. The course consisted of Chapters 1 to 8
(omitting parts of Chapter 3), together with the recursive aspects of Chapter
12 and the first half of Chapter 13.

There are various ways of using this book as a text for students who have
not had a previous course in logic. It could be used as a two-semester course
in computability and logic, or the first part of the book could be used as a
one-semester course in computability. It should also be possible to use the
book as a one-semester course leading up to the Incompleteness and
Undecidability Theorems by using the following approach. Begin with
Chapters 1 to 5, followed by Chapter 9 (possibly only showing that r.e. sets
are exponential diophantine, rather than the stronger result that they are
diophantine). Then, instead of considering an arbitrary language of predi-
cate logic and an arbitrary structure for the language, take only the language
of number theory (possibly with an extra function symbol corresponding to
exponentiation) and the structure N, and define truth only in N. Take the
notion of proof to be the axiomatic one, and take for granted that this has the
properties we would like. (I feel that if one wants to show the relevant
properties of proof, then the natural deduction approach is better.) Finally,
the Undecidability and Incompleteness Theorems can be proved, as shown,
using the results of Chapter 9 (with the language extended by a symbol for
exponentiation, and corresponding axioms, if desired).

Notation

The symbol B denotes the end of a proof.

‘If and only if’ is abbreviated to ‘iff’.

The symbols N, Z, and Q stand for the natural numbers (that is, 0, 1, 2,
and so on), the integers (positive, negative, or zero), and the rational
numbers, respectively.

N is the set of k-tuples (x,...,x) of elements of N. Bold-face letters,
such as x, y, and z, stand for tuples of elements of N; whether they are
k-tuples, n-tuples and so on will depend on the situation in which they are
used.

Standard notations of set theory, such as U, C, and so on, are used
without further comment.

Standard logical symbols, such as A and 3, are defined the first time they
are used, but the reader is expected to be familiar with them.

Part1
COMPUTABILITY

1

Epimenides, Godel, Russell, and Cantor

Some important themes of the book are given their simplest (but rather
imprecise) forms in this chapter.

1.1 EPIMENIDES

The classical Greek writer Epimenides wrote, ‘Cretans always lie’. This may
seem like an example of ancient racial prejudice. But Epimenides was
himself a Cretan. This doesn’t prevent his remark from being a bit of racial
self-hatred. However, it also leads to interesting logical and philosophical
problems.

Is his statement true? If so, Cretans always lie. Since he was himself a
Cretan, this statement, which was assumed true, must be a lie. We get a
contradiction, and his statement cannot be true.

It then follows that this statement is a lie, and, hence, that Cretans do not
always lie; we know, though, that one particular Cretan has lied on one
particular occasion.

A related but stronger form of this paradox is the statement, ‘This
statement is false’. Is it true? If so, by what it says it must be false. Similarly,
if it is false, since it asserts that it is false, it is true. So the statement cannot be
either true or false. Presumably we have to decide that the statement is
meaningless, though there is no obvious way of seeing this just from the form
of the statement.

An even more troublesome form is to take two statements written on
opposite sides of a piece of paper. One statement reads, ‘The statement on
the other side of this paper is true’, while the other reads, ‘The statement on
the other side of this paper is false’. We get a very similar paradox to the
previous one, but if we consider each statement in isolation there is no
reason why it should not be true or false (for instance, there would be no
problem if one of the statements was replaced by, ‘The statement on the
other side of this paper contains six words’).

18 Epimenides, Godel, Russell, and Cantor [Ch.1

1.2 GODEL

Consider a statement closely related to the ones in the last section, namely,
‘This sentence is unprovable’.

Can it be provable? If so, it is true. Hence, by what it says, it is
unprovable. We get a contradiction, and so we conclude that the statement
is in fact unprovable. It must also be true, since it says it is unprovable.

The alert reader may well feel that the matter does not stop here. After
all, we have just shown that the statement is true. Isn’t this a proof, and don’t
we run into the same problem as before?

The answer is that we must be more careful about what is meant by a
proof. We should specify precisely what a proof is, using some formal system
S (whose nature does not concern us as yet). Then the statement should be
changed to read, ‘This statement is not provable by means of the formal
system S°. For the same reasons as before, the statement is not provable in §
but is nonetheless true. This argument may be regarded as a proof of the
statement; but if it is so regarded, it is a proof outside the system S, and no
paradox occurs.

This is one major part of Gédel’s Incompleteness Theorem. However,
there has been a point glossed over in the above analysis. If we are looking at
a formal system S, we must be looking only at statements formed in a
language precisely specified as part of S. Our statement is not in that
language. The other major part of Godel’s proof is his observation that
numbers could be associated to statements. It is then possible to translate
statements about statements into statements about numbers. Thus we can
look at the statement, ‘“The statement in the system S whose number is 7 is
unprovable in the formal system S°. This is a statement about the number 7.
Now it can be shown that there is a number k such that the meaning of the
statement whose number is k turns out to be ‘The statement whose number
is k is unprovable in the system S°. So we get a true but unprovable
statement, as required. The details, of course, are technical, and will be
given in Chapter 13.

1.3 RUSSELL

In the early development of set theory it was thought that any property
should define a set. It turns out that this assumption leads to a paradox, as
was shown by Russell. Because of this, in formal set theory we have to be
very careful with our definitions.

Russell considered the property that held of a set iff it was not a member
of itself. Most sets are not members of themselves. For instance, the set of all
cows is certainly not a cow. But if we consider the set of all thoughts that
have ever been thought, this might be considered as a thought, and so might
be regarded as a member of itself.

Suppose that every property defined a set. Following the above, we
could define the set A to be {x; x ¢ x}. So, by definition, for any x, we have
xeA iff x¢x. In particular, this holds for 4. So we find that AeA iff A¢A,

Sec. 1.4] Cantor 19

which is a contradiction. Hence we cannot have such a set, and not all
properties define sets.
Russell based his paradox on some related results of Cantor.

1.4 CANTOR

Cantor was the founder of the theory of infinite sets. One of his results is
that, if P(X) denotes the set of all subsets of X, there can be no function from
X onto P(X).

For let f be a function from X to P(X). For any x in X, fx is a subset of X
which may or may not contain x. Now any property defines a set of all those
elements of X which have the property. (Cantor assumed this. In formal set
theory it is taken as an axiom. Unlike the closely related assumption that
every property defines a set, it does not appear to lead to any paradoxes.)

Thus we have the set A defined as {x € X; x ¢ fx}. Hence, for x in X,
x € Aiff x € fx. It follows that A cannot be fa for any a. For, if so, taking x to
be a, we would get the contradiction a € fa iff a ¢ fa.

Cantor also showed that the set of all real numbers is uncountable. One
way of showing this is to take a countable set A of reals strictly between 0 and
1 and to exhibit a real number not in A and strictly between 0 and 1.

So take such a set A, whose elements are «;, o>,... . Each real between 0
and 1 can be uniquely written as an infinite decimal (recurring 0 being
permitted, but not recurring 9). We write «; as 0-a;,a;,4;3... , ®, as
0-a5,a5,a53... , and, generally, «, as 0-a,,,4,4,3... . Now define B to be
0-b1bybs... , where b, is 1 if a,,#1 and b,=2 if a,,=1. Then B is strictly
between 0 and 1, and B cannot be in A since its nth decimal place differs from
the nth place of «,, and every element of A is o, for some n.

The arguments used in both these results are very close to one another
and to the arguments of Russell’s Paradox, and, to some extent, to G6del’s
method. If we regarded the elements a,,, as being arranged in an infinite
square the elements a,,,, would appear along the diagonal. So this argument,
and other related arguments, is referred to as Cantor’s Diagonal Argument.
We shall see that it is at the heart of many of our negative results about
computability.

2

Informal theory of computable functions

Most of the main results about computable functions can be proved with
only an intuitive idea of what a computable function is. These results will be
proved in the last three sections of this chapter (the first two sections contain
some necessary introductory concepts). Later chapters will give various
formal approaches to computable functions.

2.1 FUNCTIONS

The concept of function used in most branches of mathematics turns out to
need modification when we consider computable functions, for reasons
which will be made clear later in this chapter.

Definition Let X and Y be sets. A partial function ffrom X'to Yis a function
f from some subset A of X to Y. The set A is called the domain of f
(abbreviated to dom f). If dom fis X itself we call f a total function from X to
Y.

The word ‘function’ will always mean ‘partial function’; if a function is
total we will always state that it is total. In particular, the notation ;X — Y
will mean that fis a partial function from X to Y. A total function from Xto Y
is often defined to be a subset S of X X Y such that for every x in X there is
exactly one y in Y with (x, y) in S. Similarly, a partial function from X to Y
can be regarded as a subset S of X X Y such that for every x in X there is at
most one y in Y with (x,y) in S.

Examples For any sets X and Y, we have the empty function from X to Y.
This is the function whose domain is the empty set; that is, the function is
nowhere defined.

An example of a partial function f from N (N is the set {0,1,...} of
natural numbers) to N is given by fx = yiff x = y?; its domain is the set of

Sec. 2.1] Functions 21

squares.

We define N* to be the set of k-tuples of elements of N (more generally,
A¥* is the set of k-tuples of elements of A, for any A). We use bold-face
symbols, such as x and y to denote tuples, leaving it to the context to tell
whether they are k-tuples, n-tuples, or what.

For any subset A of N* we define the characteristic function of A,
denoted by 4, to be the total function from N*to N given by x_x = 0if x is
in A, and x,x = 1if xis notin A. The partial characteristic function of A,
denoted by y.4,, is the partial function from N*to N given by y 4,x = 0 for x
inA, and y 4,x not defined if xisnot in A. (Itis more usual to define y 4x to be
1 for x in A and 0 for x not in A. However, the current definition seems to
lead to simpler formulas, and the only important property is that the value of
the characteristic function on x tells us whether or not x is in A.)

Let f:X— Y be a function, and let A and B be subsets of X and Y
respectively. We define fA and f~'B just as for total functions. That is, fA is
{y;y = fxforsome x € A} and f~'Bis {x; fx € B}. Notice, though, that fx
need not be defined for all x in A, and that fA = f(A N dom f).

Let X — Y and g:Y — Z be functions. Their composite gf is the
function from X to Z defined by gfx = z iff thereissome yin Y withfx = y
and gy = z. This is exactly the same definition as for total functions, but we
have to take into account the fact that fand g are partial. Thus the domain of
gfis f~(dom g).

Let fand g be functions from a set X to N. Then the functions f + g and
f.g from X to N are defined by (f + g)x = fx + gx and (f.g)x = fr.gx
respectively. Since our functions are partial, both f + g and f.g have as
domains the set dom f N dom g. Notice that when fis the total function from
X to N which is constantly 0, the function f.g is not total, but is the function
whose domain is dom g and whose value is always 0. It can be shown that an
attempt to define the product to be total in this case would not be compatible
with the distributive law for addition and multiplication of functions.

The functions f and g from X to Y are regarded as equal if, for every x in
X, either both fx and gx are defined and gx = fx or neither fx nor gx are
defined. This is the same as saying that f = gif dom f = dom g and fand g
have the same value at any element of their common domain. If gx = fx for
every x in dom f, we call g an extension of f and f a restriction of g.

The set N? is bijective with N. We shall need to give an explicit bijection.
Write the elements of N? in a table

(0,0) (0,1) (0,2) (0,3) ...
(1,0) (1,1) (1,2) (1,3) ...
2,0) (2,1) 2,2) ...
(3,0) 3,1) ...

Now write down the elements of this table by moving along the diagonals
which go from north-east to south-west, that is, write them in the sequence

22 Informal theory of computable functions [Ch.2

(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0), (0,4),
Since there are k + 1 pairs (r.s) withr + s = k, we see that the pair (m, n)
occurs in the position 1 + ... (m + n) + m. Hence we have a bijection
J:N>’-> N given by J(m,n) = §(m + n)(m + n + 1) + m.

We have two functions K and L from N to N such that J = = (Kr, Lr).
They are given by the following formulas. Find s so that 3s(s + 1) < r <
i(s + 1)(s + 2). Letmber — 3s(s + 1). Thenm < s, and Kr = m, and
Lr=5— m.

We can use J to obtain bijections J,:N*— N for all k. We define J, to be
the identity, and we define J; by J5(x;,x,,%3) = J(x;,J(x3,x5)). If J, has
been defined, then J,., is defined by J,, . (x;,...,%41) =
J(x1,Ji(x2, . . ., X4+ 1). The inverse of J, has its components composites of K
and L. For instance J5 'r = (Kr,KLr,LLr).

2.2 STRINGS

Let A be a non-empty set, which we refer to as the alphabet. A string on A is
just a finite sequence of elements of A. The set of all strings on A is denoted
byA™*.

We write a string on A without commas between the elements. For
instance, a,a,a,4a, is a string on the alphabet {a,,a,,4a,,a,}, while ‘dog’ and
‘dogma’ are strings on the usual alphabet of twenty-six letters. Similarly
‘CATS and dogs, not cats and DOGS!’ is a string on an alphabet which
contains both lower-case and upper-case letters together with various
punctuation marks and the space. Also 137028 is a string on the alphabet
consisting of the ten digits {0, 1, ..., 9}.

The string a,a, . . . a,, is said to have length n. If 1 < r < s < n the string
a,.,...aiscalled a segmentof g, . . . a,; it is a proper segment unless r = 0
and s = n, and is an initial segment if » = 0. For instance, ‘dog’ has length 3
and 137028 has length 6. The latter has among its segments 70 (of length 2)
and 7028 (of length 4), while 13 and 1370 are initial segments; however, 1302
is not a segment of 137028.

Let a,...a, and b, ...b,, be strings. Their concatenation (also called
their join or product) is the string a, ...a,b,...b,, of length m + n. For
instance, 137028 is the concatenation of 13 and 7028, while the concaten-
ation of ‘dogma’ and ‘tic’ is ‘dogmatic’.

It is easy to see that the set of strings on a finite or countably infinite
alphabet is itself countably infinite. We will need for later use to obtain an
explicit one-one mapping from this set into N.

The usual n-ary representation does not provide a one—one map from the
strings on {0,1,...,n — 1} into N. For instance, the strings 1101, 01101,
and 001101 all correspond to the same integer. However, for any positive n
(including 1), there is a one—one map from {1,...,n}* onto the set of
positive integers. This map sends the string a, . . . a,, to the integer Za;n™ ~".
If the set A is finite, there is a one-one map from A onto {1, . .. ,n} for some
n, and this map obviously extends to a one-one map from A* onto

Sec. 2.3] Computable functions, listable sets and decidable sets 23

{1,...,n}*. Combining this with the previous map, we obtain a one—one
map from A * onto the set of positive integers.

We can map N* into N by sending the string a(1) . . . a(k) to the integer
2TIp#?, where p; is the ith prime (thus p, = 2,p, = 3, p, = 5, and so on).
Uniqueness of prime factorisation ensures that this map is one—one. The
initial factor 2* is needed so that (for example) the strings 134, 1340, and
13400 map to different integers.

If A is countably infinite, there is a one—one map from A onto N. This will
extend to a one-one map from A* onto N*. Combining this with the
previous map we obtain a one-one map from A* into N. There are many
other ways of finding a one-one map from A * into N. One possibility is to
regard the elements of A as being the symbolsa, a’,a'’,a’"’, and so on. Then
every string on A can be regarded as a string on the alphabet {a, '}. Since we
have already shown how to obtain a one—one map from the set of these
strings into N, this gives a one—one map from A * into N.

Exercise 2.1 Show, in detail, that the map sending ay, . . . a,,, into Za,n™ "is
a one-one map from [1,...,n}* onto the set of positive integers.

2.3 COMPUTABLE FUNCTIONS, LISTABLE SETS AND
DECIDABLE SETS

What is a computable function? In later chapters we shall give several
apparently different answers to this question, which will all turn out to
produce the same set of functions. In this chapter we shall be somewhat
vague. It is enough to regard a computable function as being a function
computed by some kind of a program, without needing to know exactly what
a program is. Readers will have to accept certain properties of programs,
which I hope will be easy to believe; in particular, they will have to accept
certain specific functions as being computable, and will have to accept that
certain constructions lead from computable functions to computable func-
tions. No knowledge of any programming language is required; however,
those readers who do have such knowledge (BASIC, which is the language
currently most used for home micros, is quite satisfactory) are advised to
justify claimed results by constructing suitable programs.

Our programs, when given an input, will compute in discrete steps.
Readers with no experience of programming will probably find this assump-
tion acceptable, as presumably actual machines compute in this way (though
each step may be quite complex). Readers with a knowledge of BASIC will
see that BASIC programs compute in this way, since each line is numbered
and each step consists of performing the action on some line. Readers with a
detailed knowledge of programming may have more difficulty with this
simple idea. Many programming languages contain instructions such as
WHILE ... DO or REPEAT ... UNTIL, and at first sight these do not
appear to act in discrete steps. But it is not difficult to replace such programs
by longer programs in a simpler language which do act as required. An

24 Informal theory of computable functions [Ch.2

example of this is given in Chapter 5, when abacus machines are replaced by
register programs.

Our programs may either halt after a finite number of steps, in which case
they provide an output, or they may continue computing for ever. Actual
computers often have a third possibility, that they may stop without giving
an output because of some error (for instance, the program might at some
stage call for division by a quantity which turns out to be zero). However, it
is easy to modify a program so that any such stopping situation is replaced by
a computation continuing for ever (in BASIC, for instance, by requiring any
error to go to a line of form n: GOTO r). Our computers will have to be able
to work with arbitrarily large natural numbers. Plainly computers in the
physical world cannot have this property (in whatever way they store
numbers, some numbers will be too large to be stored), but this is the only
way in which our ideal computers are required to differ from real ones.

We shall always be looking at functions from N* to N (or, more generally,
functions from N* to N’). A function f:N*—N will be (informally or
intuitively) computable if there is a program which, when given an input x in
N*, halts with output fx if x is in the domain of f, and continues computing for
ever if x is not in the domain of f. More generally, a function f:N*— N" is
computable if its components, that is the functions f,, ..., f,:N¥— N such
that fx = (fix, ..., f,x), are all computable. Since our programs may
compute for ever, it is clear that the function defined by a given program may
well be a partial function. We might hope that this occurs only when the
program has been badly defined, and that we could ensure our functions are
total by taking carefully chosen programs. We shall see later that this is not
possible.

Examples The empty function is computable; it is easy to obtain a program
which never halts, and such a program will compute the empty function.

The functions J, K, and L defined in section 2.1 are computable. Because
a precise definition of computability has not been given, it is not possible to
give proofs of this and other claimed results. I hope readers will feel that
these results will be true for any sensible notion of a computer program.
Those readers who have a knowledge of some programming language are
urged to give proofs of the results.

The function f:N— N given by fx = yiffx = y?isa computable function,
which is plainly not total.

Let f and g be computable functions from N* to N. Then both f + g and
f.g are computable.

Let f:N*—N" and g:N"— N° be computable. Then their composite
gf:N*¥— N¢ is also computable. In particular, the functions J, and J; ! are
computable. Further, let f:N*— N" be a function. Then f is computable iff
Jflc ! is computable. Because of this we shall usually consider functions
from N* to N rather than the more general case of functions from N* to N’;
however, it turns out ot to be convenient to look only at functions from N to
N.

Sec. 2.3] Computable functions, listable sets and decidable sets 25

Let f:N*— N be a computable function, and let r be in N. Define g by gx
= fxif fx < rand gx not defined if fx > r (and, of course, gx not defined if fx
is not defined). Then gis also computable. It should be reasonably clear that,
given a program computing f, we simply have to modify it to compare fx with
r and continue computing for ever if fx is greater than r.

Let f:N¥*1— N be a total function. We say that the function g:N*— N
comes from f by minimisation, and write gx = py(f(x,y) = 0), whengx = y
iff f(x,y) = Oand, forallz < y wehave f(x, z) # 0. If fiscomputablesois g,
since we need only ensure that the program for f is given the inputs (x,0),
(x,1), (x, 2), and so on, until, if ever, some input (x,y) has f(x,y) = 0.
Notice that g may well be partial, since there may be no y with f(x,y) = 0.
More generally, given total functions f; and f, from N**! to N, we could
consider the function py(fy(x,y) > fo(x,y)); still more generally, pyP(x, y)
denotes the least y such that P(x, y) holds, where P is any property. We shall
consider minimisation of partial functions later.

Letf,, f5, and f; be defined as follows. First, fn = 0if the nth digit in the
decimal expansion of &t is 7, otherwise f;n = 1. Next, fo,n = 0 if thereis a
block of exactly n consecutive 7s in the decimal expansion of «, the digits on
either side of this block being different from 7, and f,n = 1 otherwise.
Finally, fan = 0if there is a block of at least n consecutive 7s in the decimal
expansion of ©, otherwise fyn = 1.

Then f; is computable. Any of the methods for finding the decimal
expansion of 7 can be made into a program for computing f;.

I do not know whether or not f, is computable. At the time of writing no
theorems which let us evaluate f, are known to me.

The situation with f; is more interesting. I do not know how to compute
f. Nevertheless, it can be shown that f; must be computable. For either
there are arbitrarily long blocks of consecutive 7s in the decimal expansion
of m or there are not (one or the othér case must hold, even though we do not
know which). If there are arbitrarily long blocks, then, by definition, f3n = 0
for all n (since there is a block of more than n consecutive 7s). If not, there is
an integer k (though we do not know how to find k) such that the longest
block of consecutive 7s in the decimal expansion of n has length k. It then
follows that f;n = 0 for n < k and f3n = 1 otherwise. No matter what the
value of k is, such a function is computable.

Definition Let A be a subset of N, If the characteristic function of A is
computable, A is called decidable. If A is either empty or equals fN for some
total computable f:N— N, then A is called listable.

These definitions are made in the informal theory; the similar concepts in
the formal theory are given different names. The names are chosen so as to
suggest the properties they relate to. Thus a set is decidable if we can tell (by
means of a program for its characteristic function) whether or not an
element belongs to it. Similarly, a non-empty set is listable if we can compute

26 Informal theory of computable functions [Ch.2

alist (possibly with repetitions) of its elements in the form f0, f1,f2, One
might at first believe that such a list of the members of A would enable us to
tell whether or not a given element belongs to A. But this is not so, and we
shall later give an example of a set which is listable but not decidable. The
problem is that the members of A do not appear in the list in any particular
order. If, for instance, we have found that 1 is not among the first 179 802
members of the list, this may be because it is not in the list at all, but it may
equally well happen that it occurs as the very next member of the list. All we
can be sure of is that any member of A will appear in the list sooner or later.

Let A be a subset of N*. Then A is decidable (listable) iff J, A is decidable
(listable). The proof of this is left to the reader. Because of this we usually
look at subsets of N rather than at subsets of N*.

Examples The empty set and N are decidable. The set of even numbers is
decidable, as are the set of squares and the set of prime numbers. Any finite
set is decidable.

A method for computing a total function, whether given as a formal
program or informally, is often called an algorithm, and a method for
computing a partial function is called a partial algorithm. For instance, the
standard method of long division is an algorithm for computing the quotient
of two integers. There is also a well-known procedure for finding the greatest
common divisor of two integers; this is known as the Euclidean algorithm.
An algorithm need not be numerical. We could easily construct an algorithm
for determining whether or not a string on a given alphabet reads the same
backwards as forwards. There are also algorithms for finding one’s way
through a maze, and there are many other algorithms in graph theory which
have great practical importance.

Proposition 2.1 Let A be a subset of N. Then the following are equivalent:

(a) A is listable,

(b) A = fN for some partial computable f,

(¢) Xap is computable,

(d) A = dom g for some partial computable g.

Proof Let A be listable. If A is empty it is the domain of the empty
function, which is computable. Otherwise, A = fN, where f is total and
computable. Define g by gn = px(fx = n). Then g is computable, since fis
total and computable. Plainly gr is defined iff there is some x with fx = n.
This means that dom g = fN, and so (d) holds.

Let (d) hold. Let 0 denote the total function from N to N which is always
zero. Then 0 is a computable function, and so 0.g is computable. However,
0.g has the same domain as g, and is 0 on any element of its domain. This
means that 0.g is 4,,, and so (c) holds.

Let (c) hold. Let I:N— N be the identity function, so that In = nfor all n.

Sec. 2.3] Computable functions, listable sets and decidable sets 27

Now I + x4, is computable. It is defined on n iff y 4 n is defined; that is, its
domainis A. Its value on any ninits domain is n + 0. It follows that its set of
values is exactly A, and so (b) holds.

Now let (b) hold. If A is empty, it is listable, so we may assume A non-
empty. (It is not possible to tell, from a program for f, whether or not A is
empty. But we only need the fact that A is either empty or not empty,
without needing to know which case holds.) Take any a,in A. (Again, we do
not need to know how to find such an a, explicitly from a program for f. It is
enough to know that there is some a4 in A; this is immediate bacause we are
assuming A is not empty.)

Let P be a program for f. Each program, by definition, proceeds in a
number of steps. Define a function F:N>— N by

F(n,x) = fxif Poninput x has stopped in at most 7 steps (in this case, by
definition, the output of the computation is fx), F(n,x) = a, otherwise.

Plainly Fis total. Also, for anyn and x, F(n,x) € A, since F(n, x) is either
agor fx, both of which arein A. Also any a € A is fx for some x, and there will
be some m such that the program P on input x stops in m steps. Hence
F(m,x) = fx = a,and A = FN? Now F is computable, since to obtain
F(n,x) it is enough to run the program P on input x for n steps and observe
whether or not it has stopped, and, if so, what the output is. The function
FJ~!is then a total computable function from N to N whose set of values is
A, as required.®

As already remarked (this will be proved later), it is not possible to tell,
from a progam for computing the partial function f, whether or not fN is
empty. We have seen that if fN is not empty there is some total computable ¢
with N = fN. We have not seen how to construct such a ¢, but have only
shown that such a ¢ exists. There is a partial algorithm which, given a
program for f, will provide a program for ¢ provided fN is not empty. The
construction above is the relevant algorithm, if we have previously given a
partial algorithm to find, from a program P for f, some a, in fN provided fN is
not empty.

We cannot proceed by running the program P on inputs 0, 1, and so on,
until we get an answer. If f0 is not defined but f1 is defined, we would take an
infinite number of steps running P on input 0, and would never reach the
input 1. Instead, we begin by running P for 0 steps on input 0, then 1 step on
input 0, then for 0 steps on input 1, and so on, so that we systematically look
through all pairs (7, n) and run the program for m steps on input n. If fis
somewhere defined we will ultimately find a pair (m, n) for which P halts in
m steps on input n, as needed. This approach, of looking at one input for a
number of steps, leaving it for another input, and then returning to the
original input for more steps, is called dovetailing. It will be used frequently.

The systematic search through all pairs is obtained by going through the
pairs J~rforr = 0,1,, The algorithm is to run the program P for Kr
steps on the input Lrforr = 0, 1,2, ... until, if ever, we find an r such that P

28 Informal theory of computable functions [Ch. 2

stops in Kr steps on input Lr, and then take a, to be the resulting output. If
/N is not empty, this procedure will stop on some suitable r, while if /N is
empty this procedure will continue for ever.

Proposition 2.2 Let A be a subset of N. Then A is decidable iff both A and
N — A are listable.

Proof Let A be decidable. By definition), is computable. By a previous
example, the function f given by fx = y.x if x4x = 0, fr undefined
otherwise, is computable. But this function s just y ,,. Hence A is listable by
Proposition 2.1. It is easy to check that N — A is also decidable, and so
N — A will also be listable.

Now let A and N — A be listable. On a very intuitive level, to decide
whether or not n isin A we take the lists of the members of A and N — A and
look at them alternately until we see which list # is in. More precisely, we
take total computable functions fand g fromNtoNwithA = fNandN — A
= gN (this is not possible if either A or N — A is empty, but the result is
obvious in this case). Define 4 by #(2n) = fn, h(2n + 1) = gn. Plainly A is
total and computable and AN = fN U gN = N.

It follows that the function ¢ given by ¢x = py(hy = x) is total and
computable. However, if iy = xthenxisinAifyisevenandxisnotin A if y
is odd. Thus x € A iff ¢x is even, and so y, is the remainder when ¢x is
divided by 2. Hence y 4 is computable, as needed.®

Exercise 2.2 Show that f:N"— N* is computable iff J,f is computable iff
JifJ; ! is computable.

Exercise 2.3 Show that a subset A of N is listable (decidable) iff J A is
listable (decidable).

Exercise 2.4 Let A and B be listable subsets of N. Show that A U B,
A N B, and A X B are listable.

Exercise 2.5 Let A be listable and let f:N— N be computable. Show that
both fA and f~'A are listable. (You will have to use Proposition 2.1 in these
two exercises.)

Exercise 2.6 Is the union of countably many listable sets listable?

Exercise2.7 LetA and B be decidable subsets of N, and let f:N— N be total
computable. Show that AU B, AN B, A X B, and f~'A are decidable. What
can be said about fA?

Exercise 2.8 Show that the subset A of N is listable iff there is a decidable
subset B of N? such that meA iff there is n with (m,n)e B. Show, more
generally, that A is listable if there is a subset C of N**! for some k such that

Sec. 2.4] Universal functions and undecidable sets 29
meA iff (m,n)eC for some neN,.

Exercise 2.9 Let f and g be total computable functions from N to N.
Suppose that whenever mefN there is some x with x <gm and m = fx. Give
an intuitive argument to explain why fN is decidable. Can you make this
argument more precise?

Exercise 2.10 'Show that a subset of N is infinite and decidable iff it can be
written as fN where f is total computable and fim < fn for m <n. (Use the
previous exercise.)

Exercise 2.11 Show that a non-empty subset of N is decidable iff it is fN
where fis total computable and fim < fn for m <n. (Let A be fN for such anf.
Then A is either finite or infinite, though we do not know which. If A is finite
there is nothing to prove. So suppose A infinite, and show that the
hypotheses of Exercise 2.9 hold.)

Exercise 2.12 Give an intuitive argument to show that any infinite listable
set can be written as fN where f is total computable and one-one.

Exercise 2.13 Give an intuitive argument to show that any infinite listable
set contains an infinite decidable set. Can you make the arguments of the last
two exercises more precise?

2.4 UNIVERSAL FUNCTIONS AND UNDECIDABLE SETS

Proposition 2.3 There is no universal total computable function. That is,
there is no total computable T:N*>— N with the property that for any total
computable f:N— N there is some n such that fx = T(n,x) for all x.

Proof This is our first use of Cantor’s diagonal process, which is a key tool
in the whole theory.

Suppose there is such a function 7. Then the function f:N— N defined by
fx = T(x,x) + 1isatotal computable function. By definition of T, there will
be some k such that fx = T(k,x) for all x. Now look at fk. By definition of f,
fk = T(k,k) + 1.Bydefinition of k, fk = T(k, k). This contradiction shows
that no such function T can exist.®

Theorem 2.4 There is a universal partial computable function. That is, there
is a partial computable function ®:N>— N with the property that for any
partial computable f:N— N there is some n such that fx = ®(n,x) for all x
(more precisely, such that if one of fx and ®(n, x) is defined so is the other and
they are equal).

Proof A very slight knowledge of the nature of programs is needed to

30 Informal theory of computable functions [Ch. 2

prove this very important theorem.

Whatever notion of program is taken, it is clear that a program is a string
on some finite alphabet; this is because we have already noted that a
countable alphabet can be replaced by a finite one, by replacing letters a,,
a,a,,...bya,a’,a",....The typical alphabet will consist of the twenty-six
upper-case (capital) and lower-case letters of the English alphabet, the
numbers 0, ..., 9, and various punctuation marks (including parentheses
and spaces as symbols).

Plainly, not all strings on this alphabet will be programs, but it must be
possible to tell whether or not a string is a program; the fact that a computer
can take action when a string of symbols is typed into it should justify this
claim. Also, two different programs must have different strings (else the
computer would not know which program to use when a string
corresponding to two programs was typed in).

We have already seen how to obtain a one-one map from the set of all
strings into N, in such a way that we can tell whether or not the number n
corresponds to a string. From what we have said in the previous paragraphs,
we can tell whether or not n corresponds to a program for computing a
function of one variable. If so, we can find the relevant program, and in this
case we define ®(n,x) to be the result of applying the program
corresponding to n to the input x. If n does not correspond to such a
program, then ®(n, x) is undefined.

The function ® is computable, since, given n, we can determine whether
or not n corresponds to a suitable program, and, if so, can carry out this
program on the input x.

Now let fN— N be any computable function. There must be some
program P for f. Then P will correspond to some number n, and then, by
definition, ®(n,x) = fx for every x.®

It follows immediately that there are only countably many computable
functions from N to N. Since there are uncountably many functions from N
to N there must be functions which are not computable. In particular,
Corollary 1 below shows that the function g given by gx = ®(x,x) + 1if
®(x,x) is defined, gx = 0 otherwise, is not computable.

Plainly there is a similar theorem giving a universal function from N¥*!
to N for the class of partial computable functions from N* to N. This can be
proved by the same method, or can be deduced using composition with J,
and its inverse, as previously discussed.

For a full understanding of this theorem we must see why the argument
of Proposition 2.3 does not lead to a contradiction here.

So define fby fx = ®(x, x) + 1. Then fis partial computable. So there
must be n such that fx = ®(n, x), in the sense that if one of these is defined so
is the other and they are equal. If ®(n,n) were defined, we would get a
contradiction, as before. There is no problem with the theorem itself. We
simply find that, for this n, ®(n, n) is not defined.

This argument can be extended to the following corollary.

Sec. 2.4] Universal functions and undecidable sets 31

Corollary 1 Let fx = ®(x,x) + 1. Let g be any computable function
extending f. Then g is not total.

Proof There is some m with gx = ®(m,x) for all x. Suppose gm were
defined. Then ®(m,m) would be defined and equal to gm. Then, by
definition, fr would also be defined and equal to ®(m, m) + 1. Asgextends
f, we would then have gm = fm, which gives a contradiction.®

It is customary to denote the function sending x to ®(n, x) by ¢,,, and to
refer to n as an index of this function. Thus any computable function from N
to N has at least one index; we shall see later (and it is easy to see directly, by
adding irrelevant steps to a program) that it has infinitely many indexes.

Corollary 2 Let A be a set such that if neA then ¢,, is total and such that
every total computable function from N to N has at least one index in A. Then
A is not listable. In particular, the set {n; ¢,, is total} is not listable.

Proof Suppose A were the range of the total computable function f.
Consider the function T defined by T(k,x) = ®(fk,x). Plainly, T is
computable. Also, for any k, the function ¢y, is total, by definition of f.
Hence T'is total. Also any total computable function g has index fk for some
k, and hence gx = T(k,x) for all x. This contradicts Proposition 2.3.8

We might have hoped that partial functions could be eliminated, and that
we could manage to consider total functions only. One hope would be that
when we encountered a partial function we could extend its definition so as
to obtain a total function. Corollary 1 shows that this is not possible if we
want the extended function to remain computable. Another hope might be
that we could identify which programs gave total functions, but Corollary 2
shows that this is also impossible.

We have seen that there is no obvious reason why a list of elements of a
set should enable us to decide whether or not a given element is in the set.
The next theorem proves that listability and decidability are different.

Theorem 2.5 The set {n; ®(n,n) is defined} is listable but not decidable.

Proof This set, which we will call K, is listable, because it it the domain of a
partial computable function.

If K were decidable, the set N — K would also be listable, and so the
partial characteristic function f of N — K would be computable. There
would be a number m such that fx = ®(m,x) for all x. Then x¢ K iff fx is
defined, and so x¢ K iff ®(m, x) is defined. In particular mé K iff ®(m, m) is
defined. But, by definition of K, meK iff ®(m, m) is defined. This contradic-
tion shows thai K cannot be decidable.®

We now look at minimisation of partial functions. There are two
definitions which we might consider using; however, only one of them leads
from computable functions to computable functions, so this is the only one

32 Informal theory of computable functions [Ch. 2

worth using.
Let iNf*! 5N be a function. We say g:N*—N comes from f by
minimisation if g has the following definition:

gx = y iff f(x,y) = 0 and, for all z<y, f(x, z) is defined and
non-zero.

Then g will be computable if fis computable. In order to compute g on input
x we simply compute f successively on the inputs (x, 0), (x,1), (x,2), and so
on, until, if ever, the computation halts with value zero; if this happens, the
output of the computation is the value of the (k + 1) stinput at this time. This
computation will stop after a finite number of steps with output y if f(x, 0),
...,f(x,y — 1) are defined and non-zero and f(x,y) = 0. Inthiscasey = gx.
The computation will continue for ever if f(x, z) is defined for all z but is
never zero; in this case x is not in the domain of g. The remaining case is that
there is some y such that f(x, z) is defined and non-zero for all z<y, but
f(x,y) is not defined. In this case also, gx is not defined, and the computation
will continue for ever, because the computation for f on the input (x,y)
continues for ever.

The alternative definition for minimisation is the following, which I call
pseudo-minimisation:

h comes from f by pseudo-minimisation if hx = y iff f(x,y) = 0
and, for all z <y, either f(x, z) is not defined or it is defined and
non-zero.

For instance, let f:N?>— N be defined by f(x,y) = Ounlessy = 0 and xéK
(where K is any set which is listable but not decidable), in which case f(x, y) is
not defined. Itis easy to see that fis computable. The function obtained from
f by minimisation is the partial characteristic function of K, which is
computable. However the function obtained by pseudo-minimisation is the
characteristic function of K, which is not computable. Because pseudo-
minimisation does not preserve computability we shall never use it. How-
ever, I feel it is worth mentioning, both because it is at first sight a reasonable
definition and because some authors do use what I call pseudo-minimisation
as their definition of minimisation. As a result they claim that minimisation
of partial functions does not preserve computability, and they have to look
at minimisation only for total functions.

2.5 RICE’S THEOREM

The next lemma requires a more detailed knowledge of what a program is
than we need elsewhere in this chapter. Consequently, only a sketch proof is
given. The ideas of this proof apply for many programming languages. A
formal proof is given in Proposition 7.10. An indication in a specific
language is given in Chapter 5, after Theorem 5.11.

Sec. 2.5] Rice’s theorem 33

Lemma 2.6 Let F:N?>— N be a computable function. Then there is a total
computable g:N— N such that, for every n, the function with index gn sends x
to F(n,x) for all x.

Sketch proof Let P be a program for F. The program P must have two
inputs, corresponding to the variables of F. Let n be fixed. We want to find a
program for the function sending x to F(n, x).

Such a program will have only one input position, in which x will appear
at the start. We need to transfer x to the second input place leaving the first
one empty, and then put n into the first input place, and then apply P. We
can put # into the first input place by adding 1 to this position » times (or by
some similar technique, depending on the programming language). If we
denote the number corresponding (as in the proof of Theorem 2.4) to this
program by gn, it should be reasonably clear that g is a computable function.
By definition the program with index gn computes the function sending x to
F(n, x), as required.m

Theorem 2.7 (Rice’s Theorem) Let A be a set of computable functions from
N to N. Then {n; ¢,, € A} is decidable iff A is either empty or consists of all
computable functions.

Proof The set {n;d, € A} is decidable iff {n;d, €A} is decidable. It follows
that we may assume the empty function o is not in A, replacing A by its
complement, if necessary. We will then show A must be empty. Suppose
not, and let fbe in A.

Let K be any set which is listable but not decidable, and let P be a
program for the partial characteristic function of K. Thus P halts from input
x iff x € K. Define F:N>—> N by F(x,y) = fy if x € K, F(x,y) undefined
otherwise. Then Fis computable, since to compute it we need only apply the
program P to the input x, and when this halts, if ever, proceed to compute fy.

By Lemma 2.6 there is a computable function s such that sz is an index of
fif n € K and is an index of @ otherwise. Hence K is the counter-image of
the decidable set {m;d,, € A} by the computable function s. This is a
contradiction by Exercise 2.7, as K is not decidable.®

An index for a function is essentially the same as a program for
computing it. Thus Rice’s Theorem can be stated informally as ‘It is
impossible to decide anything about a function from its program’. In
particular, we cannot decide whether or not a given program computes a
given function. This has important practical implications, since it means that
there is no systematic procedure which will tell whether or not an arbitrary
program is correct. Much work is being done in computer science on
methods which can be applied in practice to show given programs are
correct; however, Rice’s Theorem shows that no such method can be
guaranteed to work on all programs.

Notice that Rice’s Theorem refers to all possible indexes for functions in

34 Informal theory of computable functions [Ch. 2

A. There may well be a decidable set B such that f € A iff there issome n € B
with ¢,, = f; this refers only to some indexes for each function in A. For
instance, such a B obviously exists if A consists of a single function or of all
constant functions.

We now give an extension of Rice’s Theorem from which the former can
be derived.

Theorem 2.8 (Rice-Shapiro Theorem) Let A be a set of computable
functions from N to N such that {n;b, € A} is listable.

Then the computable function f:N— N s in A iff some finite restriction of f
isin A.

Remark Recall that g is a restriction of fif fx = gx whenever gx is defined,
and that g is finite if its domain is finite.

Proof Let K and P be as in Rice’s Theorem.
Suppose first that f has a finite restriction g in A. Define F:N>— N by

F(x,y) = fyifx € K, F(x,y) = gy otherwise.

Then F is computable. Given (x, y), we first check whether or not y is in the
domain of g, which is possible as this domain is finite. If so, we compute gy,
which we know is also fy. If not, we run the program P on the input x, and
when it halts, if ever, we then proceed to compute fy. (Notice that we cannot
begin by determining whether or not x is in K, and then computing either fy
or gy, since if x is not in K we cannot discover this in finite time.)

By Lemma 2.6, there will be a computable function s such that ¢,,, is f for
n € K and is g otherwise. Hence N — K is the counter-image under s of the
listable set {m;¢,, € A} if fisnotin A. Since N — K is not listable, and the
counter-image is listable by Exercise 2.5, we see that f must be in A.

Conversely, suppose fis in A. This time define F:N>— N by

F(x,y) = fyif the program P on input x has not halted within y
steps,
F(x,y) undefined otherwise.

Plainly Fis computable, since, given (x,y), we can simply run the program P
on input x for y steps and see whether or not it has halted, and, if not,
proceed to compute fy. Also, if x is not in K, then F(x,y) = fy for every y,
since P never halts on input x. But if x is in K, there will be some m such that
P on input x halts after exactly m steps. In this case F(x,y) is defined iff
y<m, so F(x,y), as a function of y for such an x, is a finite restriction of f.

Thus we have a computable function s such that ¢y, is fif n is not in K and
is a finite restriction of fif n is in K. It follows that unless one of these finite
restrictions isin A, the set N — Kis the counter-image under s of the listable
set {m;¢,, € A}, which is impossible.®

Sec. 2.5] Rice’s theorem 35

Corollary 1 Let {n;d, € A} be listable. Then any extension of a function in
Alis itselfin A.

Proof Lethextend f, with fin A. Then some finite restriction g of fis also in
A. Since g is also a restriction of 4, it follows that A isin A.®

Corollary2 Let {n;, € A} be listable. If the nowhere-defined function o is
in A then all computable functions from N to N are in A.

Proof Plainly the function o is a finite restriction of every function.®

Rice’s Theorem follows immediately, since if {n;$, € A} is decidable
both it and its complement are listable, and one of the two must contain ®
and so will consist of all computable functions.

We can now give some examples. From Corollary 2 it follows at once that
the sets {n;d, one-one}, {n;¢, finite}, and {n;d, has finite range} are not
listable. By the theorem itself, {r;,, has infinite range} cannot be listable.

The theorem does not give a condition which ensures that {n;$, € A} is
listable. For examples of this we show explicitly that the relevant sets are
listable. We shall let P, be the program corresponding to the integer n if
there is such a program; otherwise let P, be a fixed program computing ©
(that is, a program which never halts).

The set {n;d, somewhere defined} is listable. For the set {(n, x,); P, on
input x halts in at most ¢ steps} is plainly decidable, and the set we want is a
projection of this (precisely, it is the image of this set under the map from N3
to N which sends any element of N° to its first component), and so is listable
by Exercise 2.5. Similarly {n;¢, is not one-one} is listable, being a
projection of the decidable set {(n,x,y,?); x#y and P, halts in at most ¢
steps on both the input x and the input y with the same output in both cases}.

It is possible to give a necessary and sufficient condition for {n;¢,, € A} to
be listable. The details of the proof are rather technical, and so the proof will
be left to Chapter 10.

Exercise 2.14 Show that, for any r, the set {n;, takes at least r values} is
listable, and so is {n;®,, is defined for at least » numbers}. What happens if
‘at least’ is replaced by ‘exactly’? What happens if we consider the set of
those pairs (7, n) satisfying the various conditions?

Exercise 2.15 Let A be listable. Show that {n;A meets the range of ¢,,} and
{n;A meets the domain of ¢,,} are listable. What happens if we consider
{n;A contains the range of ¢,,} and {rn;A contains the domain of ¢,,} ? Does it
make any difference if A is decidable?

3

Primitive recursive functions

In this chapter we look at an important class of intuitively computable
functions. This class includes most functions we are likely to consider in
practice.

3.1 PRIMITIVE RECURSION

Let g:N*—> N and h:N**2—-N be functions. We say that fiN**! >N is
defined from g and 4 by primitive recursion if f satisfies the conditions
f(x,0) = gx and f(x,y + 1) = h(x,y,f(x,y)) for all x and y. Since the functions
may be partial, these equations must be interpreted as saying that if one side
exists so does the other and they are equal. We allow the case k=0, when g
is just a number.

It is easy to see (by induction) that, given g and A, there is at most one
such function f. It is intuitively reasonable that there exists such an fand that
f is total if g and & are total. This can be proved, but the proof is more
difficult than one would expect and will be left to the final section of this
chapter. If g and A are intuitively computable then so is f. To compute f(x,5),
for instance, we first compute f(x,0)(= gx), then compute f(x,1) using 4 and
the already computed value of f(x,0), then compute f(x,2) using /# and the
already computed value of f(x,1) and so on.

The zero function Z:N— N is given by Zx =0 for all x. The successor
function S:N— N is given by Sx =x + 1 for all x. The projection functions
n,:N*"—N (where 1<i<n) are given by m,(x,...x,) =x; for all
X1, . . ., X,. The zero, successor and projection functions are called initial
functions. Note that &, is the identity function on N.

Sec. 3.1] Primitive recursion 37

A set C of total functions from N” to N (for all n) is called primitive
recursively closed if it satisfies the following three conditions:

(1) all initial functions are in C.

(2) Cisclosed under primitive recursion. That is, if f comes from g and 4 by
primitive recursion, and g and 4 are in C, then fis also in C.

(3) Cisclosed under composition. That is, if fcomes fromgand 4, . . ., A,
by composition, so that fx = g(h,x, . . ., hx),wheregandh,, . . ., h,arein
C, then fis also in C.

A function f is called primitive recursive if there is a sequence of
functions f;, . . ., f,, with f,, being f, and such that for all » <n either f, is an
initial function, or there are i and j less than r such that f, comes from f; and f;
by primitive recursion, or there are i less than r and j(1), . . ., j(k) all less
than r such that f, comes from f; and fj,y, . . ., fj«x) by composition. Such a
sequence will be called a defining sequence for f. Note that (by induction on
r) each f,, and hence f itself, will then be total.

Lemma 3.1 (i) The set of all primitive recursive functions is a primitive
recursively closed set. (ii) Any primitive recursively closed set contains every
primitive recursive function.

Proof (i) If fis one of the initial functions then the sequence with one term f
shows that f is primitive recursive.

Let f be obtained by primitive recursion from the primitive recursive
function g and h. Then there are defining sequences g, . . ., g,, and
hy, ..., h, for g and k. Then the sequence g, . . ., &s Ay, . - -, h,, fisa
defining sequence for f.

Now let f be defined by composition fromg and 4y, . . ., h,, all of which
are primitive recursive. Take defining sequences g, . . ., g,, for g and
hits « « +» Rinqy for h;. Then the sequence

815 -+ gm’ hlln RS hl,n(l)’ h21’ LS] hk,n(k)’f

is a defining sequence for f.

(ii) Let C be a primitive recursively closed set and f a primitive recursive
function withf;, . . ., f, as a defining sequence. Itis easy to see, by induction
on r, that f,eC for all r<n. In particular f,,, which is f, is in C.®

We now look at some examples of primitive recursive functions. We
normally use Lemma 3.1(i) to show that a function is primitive recursive
rather than finding a defining sequence.

(I) Any constant function is primitive recursive.

First look at constant functions with domain N. Z is constantly 0, SZ is
constantly 1, SSZ is constantly 2, etc. If we want a constant function with
domain N" we need only compose one of these with the projection ,,;.

(II) Addition is primitive recursive.

38 Primitive recursive functions [Ch.3

For addition is defined by x+0=x, x+(y+1)=(x+y)+ 1. More
formally, define a(x,y) to be x+y and we have o(x,0)=x=m,x,
a(x,y + 1) = Sa(x,y). It follows that o comes by primitive recursion from n;,
and S733, and so o is primitive recursive.

Further, we can define a,,(x;, . . .,x,)tobex; +. . .+x,,anda, willbe
primitive recursive for any n. This is proved by induction on n. For we have

an+1(x1, L) X,,,0)=a,,(x1, vy X,,)
and

(1,,+1(X1, o "xmy+1)=0'n+l(xl, .o "xn,y)+1'

Hence a,,, ; comes by primitive recursion from a,, and Sw,, , 5 ,, + . The latter
is primitive recursive (as the composition of initial functions) and so a,, ;
will be primitive recursive if a,, is primitive recursive.

(IIT) Multiplcation is primitive recursive.

For multiplication is defined by x.0=0, x.(y+1)=x.y +x. More
formally, define u(x,y) to be x.y and we have u(x,0)=0=Zx,
m(x,y + 1) =a(x,u(x,y)). Hence w is primitive recursive, since it comes by
primitive recursion from the functions Z and , where B is the composite of
the primitive recursive function a with m;, and ;5.

As in (II), the product x;. X, is a primitive recursive function, for
any n.

(IV) Exponentiation is primitive recursive.

Here we have x°=1, x”*1=x”.x . This can be formalised, as in (II) and
(III), but in future the informal expression will be given, leaving the precise
formalisation as an exercise for the reader.

(V) x! is primitive recursive, being given by 0! =1, (x + 1)! = x!.(x + 1).
(VI) The sign of x, sgx, is defined by sg0=0, sgx=1 for x#0. This is
primitive recursive, since it comes by primitive recursion from 0 and the
constant function 1.
(VII) The cosign of x, cox, is defined by co0= 1, cox =0 for x #0. This is
primitive recursive, as for (VI).
(VIII) The predecessor of x, pdx, is defined by pd0 =0, pd(x + 1) = x. It is
primitive recursive, since it comes by primitive recursion from 0 and the
function n,,.
(IX) x — y does not map into N, so we do not consider it. Instead we look at
x =y, which is defined by x -y =x—y if x=y, x = y = 0 otherwise. This is
primitive recursive, since we can easily see thatx -0=x,
x=(@+1)=pd(x—+y).

|x — y| is also primitive recursive, since it equals (x = y) + (y = x).

Sec. 3.1] Primitive recursion 39

(X) For the remainder of this chapter, C will be some primitive recursively
closed set of functions. We shall show that certain constructions applied to
functions in C produce functions which are also in C.

Let NN be in C. Let g:N">N be given by g(x, ..., x,)=
f»1, - - ., yi), where each y; is either x; for some i or is a constant. Then g is
also in C.

This is true because g is the composite of f with functions which are either
projection functions or constant functions. By definition the projection
functions are in C, and by Lemma 3.1(ii) the constant functions, being
primitive recursive, are also in C.

Let g:N¥— N and A:N¥*2—N be in C, and let f:N**1— N be given by
fO,x1, .« x) =80x1, -« X)), o+ 1,xq, o« o, X)) =
h(xg, - -+, Xz, f(Xgs - + ., Xx)). Then fis also in C. That is, we can make
definitions by primitive recursion on any variable, not just the last one.

To see this we define A’ by h'(x,, . . ., x,,y,2) =h(y,xy, . . ., X4,2). By
earlier remarks, A’ is also in C, and hence the function f' defined by primitive
recursion from g and A’ will also be in C. However, it is easy to check (by
induction on x,) that f(xo,x;, . . ., X) =f (X1, . . ., Xg,X0). Asf €C we also
have feC.

(XI) Let :N¥*! - N be in C. Then =Y f(x,r) and IT"<” f(x,r) are in C.

Define g(x,y) to be X"=” f(x,r). Then we have g(x,0)=f(x,0) and
g(x,y +1)=g(x,y) + f(x,y + 1). If we define h(x,y,z) to be z +f(x,y+1)
then A will be in C, since we are assuming f is in C and addition, being
primitive recursive, is in C. Since g comes by primitive recursion from f(x,0)
and h, which are both in C, we see g is in C. A similar proof works for I1.

Similarly, if we take the sum (or the product) over all z <y (instead of
over all z<y) we still get a function in C, by a variant of the formula; here if
y =0 we must take the sum to be 0 and the product to be 1. More generally,
we could take the sum or product from y, to y, instead of from 0 to y, and still
get a function in C.

(XII) Definition by cases.

Letf,,...,fu 81, - - -, 8 be functions in C from N” to N. Suppose that
for every x there is exactly one i such that g;x = 0. Define f:N"— N by fx = fx
if gx=0. Then feC.

Notice first that if gx = 0 then cog;x = 1 while for j # i we have cogix =0,
since, by assumption, we then have gx+#0. Hence f is given by fx=
fix.cog;x+. ..+ f,x.cog,x,and so fisin C.

There is another version of the definition by cases. Suppose we are given
functionsf, . . ., f,+1,81, - - -»&»in C, such that for every x there is at most
one i with gx =0. If we define fx to be fxif gx=0(fori=1, ..., n) and
fx=f,,xif gx#0for all i, then again fe C. It is enough to define a function
8n+1 in C which is zero iff all of gy, . . ., g, are non-zero; for then the
previous version applies since fx = f,, , x if g, , ;x=0. We need only define
gn+1Xtobeco(gx. gnX).

(XIII) The quotient and remainder when y is divided by x, which we denote
by quo(x,y) and rem(x,y), are primitive recursive.

40 Primitive recursive functions [Ch.3

It is easy to see that, for x # 0, we have quo(x,0) =0 and quo(x,y + 1) is
either quo(x,y) or quo(x,y) + 1. Precisely, quo(x,y + 1) = quo(x,y) + 1 iff
y +1=1x.(quo(x,y) + 1). We simply define quo(0,y) by this formula, which
gives quo(0,y) =0 for all y. Later we will give a different approach to
showing that quo is primitive recursive, and then we will use a different
definition of quo(0,y). We have no interest in what happens when x is 0,
except that we must have some meaning given to quo(0,y) as primitive
recursive functions are total; so no problems arise because the different
approaches defirie quo(0,y) differently.

The above definition is like a definition by cases, but is not quite of
that form. In fact it shows that quo is defined by primitive recursion from Z
and a function A:N>—N given by h(x,y,z2)=z+1 if y+1=x.(z+1)
and hA(x,y,z) =z otherwise. We can write this as h(x,y,z)=z+1 if
ly +1—x.(z+1)| =0 and h(x,y,z) = z otherwise. This makes A primitive
recursive, by the second version of definition by cases. As quo comes from Z
and A by primitive recursion, quo will be primitive recursive.

Finally, rem is primitive recursive as rem(x,y) =y = x.quo(x,y).

(XIV) The pairing functions J,:N¥— N are primitive recursive.

Since J, is obtained by a sequence of compositions from J and
projections, it is enough to show J is primitive recursive. Now J(m,n) is
quo(2,(m + n)(m + n + 1)) + m, and so the result follows by (XIII).

(XV) We say that a function f:N"— N is in C if its coordinate functions
fi, - - -, fx» which are defined by fx = (fix, . . ., fix), are in C.

With this notation the functions J; ! are primitive recursive. Since the
coordinate functions are obtained from K and L by sequences of compo-
sitions, it is enough to show that K and L are primitive recursive. One proof
of this is given as Exercise 3.4, and another proof is (II) of section 3.3.

(XVI) Let X be any set and let f: X— X be a function. We define the iterate
of f to be the function F:X X N— X given by F(x,0)=x, F(x,n+1) =
f(F(x,n)) for all n. We also refer to the function from N to X which sends n to
F(x,,n) as an iterate of f, or more precisely as the iterate of f starting at x,.

If f:N*— N¥is in C then so is its iterate F:N¥*!— N¥ (and hence so is the
iterate starting at x,, for any x,).

First assume k = 1. Then F is obtained from n;, and A, where h(x,y,z) =
fz, by primitive recursion. Since fis in C so is 4, and then Fis in C.

Now let k be arbitrary. Define g:N— N to be J,f/;'. Since J, and its
inverse are primitive recursive, and hence in C, and fis in C, we also have g
in C. By what we have just shown, the iterate G of gisin C. But it s clear (by
induction on y) that F(x,y) =J; 'G(J,x,y), and so Fis in C.

The following theorem will be useful in Chapter 5; it enables us to
replace primitive recursion by iteration, which is easier to look at.

Theorem 3.2 Let C be a class of partial functions which contains the initial
functions and is closed under composition and iteration. Then C s also closed
under primitive recursion.

Proof Let f:N**!— N be obtained by primitive recursion from g and 4,

Sec. 3.2] Bounded quantifiers and minimisation 41

where g and h are in C. Let ¢p:N*+*2—N¥*2 be defined by ¢(x,y,z) =
(x,y + 1,h(x,y,2)) and let ® be the iterate of ¢. By induction on y we can
show that ®(x,0,gx,y) = (x,y,f(x,y)). Now ¢ is in C since & is, and so @ will
bein C. As gis also in C, we find that fis in C.®

Exercise 3.1 Give formal proofs that the functions defined in (III) to (IX)
are primitive recursive.

Exercise 3.2 Let sqrx be the largest integer whose square is <x (that is,
sqrx is the integer part of the square root of x). Show, as in (XIII), that sqr is
primitive recursive.

Exercise 3.3 Show that s(s + 1)/2 < riff (25 + 1)2<8r + 1. Deduce that the
function sending r to the largest s with s(s + 1)/2 <r is primitive recursive.

Exercise 3.4 Use the previous exercise to show that the functions K and L
are primitive recursive.

3.2 BOUNDED QUANTIFIERS AND MINIMISATION

We say that a subset A of N¥is in C if its characteristic function is in C. We
say that a property (or predicate) P of k variablesisin Cif the set {x; x has P}
which it defines is in C. It seems to me inconvenient to give a formal
definition of a property (the words ‘property’ and ‘predicate’ will be used to
mean the same thing). Examples of properties are ‘equals’, ‘divides’,
‘prime’, ‘between’, whose corresponding sets are, respectively,

{(x,y) € N, x=y}, {(x.y) € N x divides y}, {x € N; x is prime} and
{(x,y,2) e N}, x<y<zorx>y>z}.

We can apply logical connectives to properties to obtain new properties.
Thus, PV Q, the disjunction of P and Q, holds for x if either P or Q (or both)
holds for x. The conjunction PAQ of P and Q holds for x if both Pand Q hold
for x. The negation — P of P holds for x if P does not holds for x. If P is a
property of k+1 variables then the universal quantification VyP and
existential quantification JyP are properties of k variables such that VyP
holds for x if P holds for (x,y) for all y, while y P holds for x if there is some y
such that P holds for (x,y).

The predicates = and < are primitive recursive, since their defining sets
have characteristic functions sg|x — y| and sg(x = y). Other examples will
have to wait till the next few results are proved.

(I) Suppose there is a function ¢ in Csuch thatx € A iff px =0. Then A is in
C, since its characteristic function is just sgé.

(1) Let A and B be subsets of N* which are in C. Then N*— A, AU B, and
AN BareinC. To see this let x4 and y g be the characteristic functions of A
and B. Then N¥— A has characteristic function 1=y, and AU B has
characteristic function 3 4.% 5, while (x4 + xg)x=0iff x e AN B.

Suppose that f:N" - N¥is a function in C, and that X is a subset of N"in C.
Then f~'A and A X X are in C, since the former has ,f as its characteristic

42 Primitive recursive functions [Ch.3

function, while the function ¢ given by ¢(a,x) = x4a + y X is zero exactly on
AXX.

In particular, if :N"— N is in C, then {(x,y); fx =y} and {(x,y); X<y},

and other similar sets, are in C.
(IIT) Let P and Q be properties of k variables which are in C. Then the
properties = P, PVQ, and PAQ are in C. We need only observe that if P
and Q define the sets A and B, then these properties define respectively the
setsN -~ A, AUBand ANB.

In particular the predicates ‘less than’ and ‘greater than’ will be primitive
recursive.

The properties P— Q and P<>Q are also in C, since the former is the
same as (= P)VQ, and the latter is just (P— Q)A(Q— P).

Alsoif f:N"— N¥isin C, then {x; fx has P} is in C, since its corresponding

setis f~1A.
(IV) Let C be the class of intuitively computable functions. Then asetisin C
iff it is decidable. It follows from Theorem 2.5 and Exercise 2.8 that there is a
subset B of N2 which is in C and such that {x; 3y with (x,y) in B} is not in C.
Similarly, when C; is the class of primitive recursive functions, Theorem 4.9
and Exercise 4.3 show that there is a subset B of N?in C, and such that {x; 3y
with (x,y) in B} is not in C,. However, problems do not arise if we put a
bound on the quantification.

To be precise, let P be a property of k+1 variables. The property
(3z<y)P(x,z) is defined to be true iff there is some z <y for which (x,z) has
the property P. Similarly the property (Vz < y)P(x,z) is true iff (x,z) has the
property P for all z<y. Both of these are properties of k + 1 variables.

If Pisin C, then both (3z <y)P(x,z) and (Vz <y)P(x,z) are in C. For let
x, be the characteristic function of P. If there is u <y with (x,u) having P,
then y(x,u) =0 and hence IT*=” y(x,z) is 0. If there is no such u, then
x(x,z) =1 for all z<y and hence IT*="y(x,z) is 1. Thus the function
I1#=” y(x,z), which is in C, is the characteristic function of (3z <y)P(x,z).
The property (Vz <y)P(x,z) is in C, since it can be written as
- (3z=<y)(—P(x,2)).

The related predicates (3z <y)P(x,z) and (Vz <y)P(x,z) are also in C,
since the product of the x(x,z) for z <y is also a function (of x and y) in C.

If we combine these results with the last result in (III) we find that if, in
addition, f:N¥— N is a function in C, then the properties (3z < fx)(P(x,z))
and (Vz < fx)(P(x,z)) are in C, as are the properties obtained by replacing
< by <.

(V) Similarly, minimisation of a predicate in C may take us outside C. In
particular, if we take a primitive recursive function f whose minimisation g is
not total then f will be in C for all C but g cannot be in C as it is not total.

The situation is more complicated if we take a function f whose
minimisation g happens to be total. In that case, when C is the class of
recursive functions defined in the next chapter, it is immediate from the
definition that g isin Cif fis in C. By contrast, when we take C to be the class

Sec. 3.3] Examples using bounded minimisation 43

of primitive recursive functions, the discussion of Ackermann’s function in
section 3.6 shows that f can be in C but g notin C.

We will now show that bounded minimisation remains in C.

Let P be a predicate of k+1 variables. We define the function
(uz <y)P(x,z) to be the least z <y such that P holds for (x,z). We will show
that this function from N**! to Nisin Cif Pisin C.

Suppose that P holds for (x,r) but not for (x,i) when i <r. Let be the
characteristic function of P. Then y(x,7) =0 and x(x,i) =1 for i <r. Hence
IT°== y(x,i) is 1 for z <r and O for z =r. If we take the sum of these products
for all z=<y the resulting function L*=<"IT"<Z y(x,i) is a function in C, and
equals r which is by definition (uz < y)P(x,z), as required.

Notice that if P(x,i) is false for all i<y then (uz <y)P(x,z) equals y + 1
according to this definition. Hence the value of (uz < y)P(x,z) is not, as one
might suppose, always at most y. However, this definition seems to me
better than the alternative definition which defines (uz < y)P(x,z) to be 0 if
P(x,i) is false for all i < y. Firstly, this alternative definition does not provide
such a simple formula. Secondly, if (uz < y)P(x,z) = 0 with the alternative
definition we would not know whether or not P(x,0) holds, which would be
inconvenient.

Suppose, in addition, that we have a function f:N¥— N in C. Then, by
composition, the function (uz <fx)P(x,z) is in C.

We can also look at the largest z =<y such that P(x,z) holds. This is
denoted by (u'z <y)P(x,z). Observe that, if there is any such z, we have
P(x,z) and, for any w <y, if w > z then — P(x,w); thatis, w<zor - P(x,w).
Also if z, <z we do not have — P(x,w) for all w> z, since we have P(x,z).
Thus we can define (u'z <y)P(x,z) to be
(mz=<y)[P(x,2) A(VYw=<y) (w=<zV - P(x,w))]. Hence (u'z=<y)P(x,z) is
alsoin Cif Pis.

In applying (IV) and (V) two principles are useful. The first is that if
there is only one z with a property it is certainly the least z with that
property. The second is that we may want to know about the least z with a
property (or about the existence of such a z); in order to get rid of the
unboundedness of the minimisation (or quantification) we may be able to
find a suitable bound. This is illustrated in the examples in the next section.

3.3 EXAMPLES USING BOUNDED MINIMISATION

(I) The square root function, defined by sqrn = yif y><nbut (y + 1)>>n, is
primitive recursive. One proof of this is given as Exercise 3.2. But we can
now simply observe that sqrn = (u'y <n)(y*><n).

(IT) The functions K and L (which are the components of J ~') are primitive
recursive.

By definition Kr is the unique m for which there is n with J(m,n)=r.
Thus Kr=um3an(J(m,n) =r). This is not enough to show K primitive
recursive, since we have unbounded minimisation and quantification. How-
ever we know that m,n <J(m,n), and hence
Kr=(um=<r)(3n<r) (J(m,n)=r). Since J is primitive recursive, the

44 Primitive recursive functions [Ch.3

predicate J(m,n) = ris primitive recursive. As r(= m3,(r,m,n)) is a primitive
recursive function of (r,m,n) it follows first that (In<r)(J(m,n)=r) is a
primitive recursive predicate of r and m, and then that
(um<r)(3An<r)(J(m,n)=r) is a primitive recursive function of r, as
required. Similarly for L.

(III) The predicate ‘divides’ is primitive recursive. First we have that x
divides y iff 3z(xz = y). If thereissuch a z, thenz <y forx # 0, whileifx =0
either there is no such z (if y # 0) or we can take z to be 0. Thus x divides y iff
(3z=<y)(xz=y). Since multiplication is primitive recursive, the predicate
xz =y is primitive recursive, and as y is a primitive recursive function of (x,y)
the predicate (3z <y)(xz = y) is primitive recursive.

(IV) The functions quo and rem are primitive recursive.

Let quo(x,y) =q. Then, if x#0,xg<yandx(q+1)>yand also g =<y.
Thus we define quo(x,y) to be (u'z <y)(xz <y). As mentioned earlier, this
definition is not the same as the previous definition of quo when x is 0, but
this does not matter, as we shall never be interested in this case.

Finally, we define rem(x,y) to be y ~x.quo(x,y), which is also primitive
recursive.

(V) The predicates ‘composite’ and ‘prime’-are primitive recursive.

By definition x is composite iff it is the product of two integers greater
than 1. Since an integer greater than 1 is y + 2 for some yeN, we have x
composite iff JyIz((y + 2)(z + 2) = x). Since y and z will then be at most x,
we find that x is composite iff (Jy < x)(3z <x)[(y + 2)(z + 2) = x], which isa
primitive recursive predicate.

Also, as 0 and 1 are not regarded as being either prime or composite, we
see that x is prime iff (x #0)A(x# 1)A(x not composite), which is a
primitive recursive predicate.

(VI) Let p, be the nth prime. Then p,, is a primitive recursive function of n.

Here we have po =2, p, =3, p, =5, etc. Thus p,, is the iterate starting at 2
of the function f such that fx is the least prime > x. Hence it is enough to
show f is primitive recursive.

Now the predicate ‘p prime and p >x’ is primitive recursive, and f is
obtained from this by minimisation. If we can find a primitive recursive g
which is a bound for f, so that fx = (up < gx) (p prime and p > x) the result
will follow.

We can take gx to be x!+ 1, which is primitive recursive. For x! +1
cannot be divisible by any of 2,3, . . .,x, and so there must be a prime < gx
and > x since gx has at least one prime factor.

(VII)Any positive integer a can be writen as the product of prime powers. If
we write aas p§ @ p ¢ . . . we define the nth exponent of a, written exp,,a, to
be «,,. We also define the length of a to be the largest n such that «,, # 0. Then
exp,a is a primitive recursive function of n and a, while the length of a is a
primitive recursive function of a.

Observe first that p2™ divides a, while p3™*! does not divide a. Also
«, <a,so a,+ 1=<a. Thus we can define exp,a to be (1'y <a)(p}, divides a).
We choose this to be the definition of exp,,a even when a is 0.

Sec. 3.4] Extensions of primitive recursion 45

Let the length of a be k. Thus exp,a =0 for i> k. But we already know
that exp,a must be 0 for i > a. Hence as exp,a is not 0, by definition, we see
that the length of a is (p'n<a)(exp,a#0). This shows that length is
primitive recursive since exp,a is a primitive recursive function of n and a.

3.4 EXTENSIONS OF PRIMITIVE RECURSION

We can now look at simultaneous primitive recursion and other extensions
of the concept of primitive recursion.

Let go,g, be functions from N* to N and let h,h, be functions from N**3
to N. We can define functions f,,f,:N**!— N by f,(x,0) = gox, f,(x,0) = g,x,
fO(x’y + 1) = h()(X,y,ﬁ)(X,Y),fl(X,y)),f](X,)’) = hl(x’y’f()(x’y)’fl(x’y))' Thenf()
and f; are in Cif g, g;, hy, and A, are in C.

To see this define f, g, and & by f(x,y) = J(fo(x,y).f1(X,)), 8x = J(goX,81X)
and h(x,y,z) =J(u,v) where u=hy(x,y,Kz,Lz) and v=h,(x,y,Kz,Lz).
Then, since J,K, and L are primitive recursive, f,and f, will be in Cif fis in
C. However, the functions g and 4 are in C and it is easy to check that f comes
from g and h by primitive recursion. Hence the result follows.

Now suppose we have g,,g,:N¥— N and #:N¥*3>— N in C. Suppose f is
defined by f(x,0)=gox, f(x,1) =gix, f(x,y +2) = h(x,y,f(x,y)f(x,y +1).
Then fisin C.

Here we reduce to the previous case by putting f,(x,y) = f(x,y + 1). Then
f and fi satisfy the equations f(x,0) = gox, f1(x,0) = gx, f(x,y + 1) = f,(x,y)
and fi(x,y + 1) = h(x,y,f(x,y),f1(x,y)). This is a simultaneous recursion of
the kind we have just considered, bearing in mind that the third equation
could be written as f(x,y + 1) = Ty 3 4 +3(X,Y.f(X,).f1(X,))).

Plainly these results can be extended to any number of simultaneous
primitive recursions.

Proofs by induction are often made using complete induction instead of
ordinary induction; that is, by proving a property for n + 1 assuming it not
just for n but for all r < n. Similarly we could require a function to be defined
so that f(x,n + 1) depended on the values of f(x,r) for all r<n.

To make this precise we first define for any f:N**!— N another function
F:N**!1 N which is called the history of f. We define F(x,y) to be
IT"<Y pf*", Then, for any r <y we have f(x,r) = exp,F(x,y), so that F(x,y)
gives us knowledge of f(x,r) for all r <y, which explains the name ‘history of
f.

Lemma 3.3 Let F be the history of f. Then Fis in Ciff fis in C.

Proof Since f(x,r) = exp,F(x,r), and exp,a is a primitive recursive function,
we see that fis in C if Fis.

Conversely let f be in C. Since the functions p, and a® are primitive
recursive and fis in C, the function pf™" will be in C, and hence Fwill also be
inC.m

Let g:N*->N and h:N**2—N be functions. We say fiN**' N is
obtained from g and A by course-of-values recursion if f(x,0)=gx and

46 Primitive recursive functions [Ch. 3

f(x,y +1) = h(x,y,F(x,y)), where Fis the history of f. The use of Fis the only
way we can keep track of the values of f(x,r) for arbitrary values of 7.

Lemma 3.4 Letfbe obtained from g and h by course-of-values recursion. If
gand harein C then so is f.

Proof 1t is enough to show F is in C. Now F(x,0) =2%*, and this latter
function is in C. Further F(x,y + 1) = F(x,y).(p, +)®>*". Thus we define
H by H(x,y,z) = z.(p,+,)"®”-?), and we see that H is in C. Now F comes
from 28* and H by primitive recursion, so that Fis in C, as required.®

As an example suppose that f:N— N has its value at x defined in terms of
its values at x/2 and x/3, or, more precisely (as we require all variables to be
integers), in terms of quo(2,x) and quo(3,x). For instance suppose we have
f0=2, fx= fquo(2,x) + fquo(3,x). We must express this as a course-of-
values recursion. Since both quo(2,x + 1) and quo(3,x + 1) are at most x,
and fr=exp,Fs whenever r<s, we can define f by =2 and f(x+1) =
€XPguo(z.x + NFX + €XPguoz.x+1)Fx, Which is a course-of-values recursion
from a primitive recursive function. Hence fis primitive recursive.

We conclude this section with a complicated example. This is included
partly to show how quite complex definitions can be fitted into the frame-
works we have considered. In Chapter 12 we shall argue informally that a
certain set which we construct is decidable; a formal proof of that result
would be a slightly more complex version of the example below.

Let A be a subset of N and let f,g:N*— N be functions such that both
f(m,n) and g(m,n) are greater than max(m,n). Let B be the smallest subset
of N which contains A and is such that f(m,n) € B if m and n are in B and
g(m,n) € Bif m € B (whatever nis). If A, f, and g are in C then Bisin C.

The definition of B (as the smallest set having the stated properties) and
the assumed properties of fand g tell us that 0 € Biff0 € A, whilen+1€ B
iff either n + 1 € A or there are r and s, both at most n, with » and s in B and
f(r,s)=n+1 or there are r and s, both at most n, with r in B and
g(r,s) =n+ 1. It is enough to find a function ¢ in C such that ¢px = 0iff xeB.
We define ¢ in terms of f,g, and the characteristic function y of A.

Suppose we have already defined ¢x for x<n. Then ¢p(n+ 1) =0 iff
either y(n + 1) =0, or for some r,s <nwe have f(r,s) =n+1and pr=0= ¢s
or for some r,s<n we have g(r,s)=n+1 and ¢r=0. These last two
conditions can be combined into the condition that, for some r,s<n,
(or+ ¢s + [n+1—f(r,s))(¢dr+|n+1-g(rs)|)=0. Hence we can define
¢(n + 1) to be

x(n+ 1).IU<"TE<"(¢r + s + [n + 1 = f(r,5)|)(dr + [n + 1= g(r,5)|),
and we will have, as needed, ¢(n+1)=0iff n + 1€B.
Finally we have to express this definition of ¢(n + 1) in terms of @, the

history of ¢. Since, for r<n, we have ¢r = exp,Pn, the expression is

o(n+1)=yx(n+1).II"<"IF*="(exp,Pn + exp,dn +
|n+ 1= f(r,s)|)(exp,Pn + |n+ 1 - g(r,5))).

Sec. 3.5] Functions of one variable 47

Hence ¢ is obtained by course-of-values recursion from %0 and the function
h given by

h(x,y) = x(x + 1).II"<*TI*<*(exp,y + expyy + |x + 1 = f(r,s)|) X
X (exp,y + |x + 1 —g(7,9)]).

The complicated function h is obtained by procedures we have already
discussed (forming I1"<* and exp,, etc.) from the functions f,g, and . Since
f.g, and y are in C, h will also be in C. It follows that ¢ is in C, as claimed.

Exercise 3.5 Let g,,g,:N— N and #:N*— N be functions. Let f:N>— N be
defined by the double recursion f(m,0) = gym, f(0,n) = gyn (we must have
g00=¢g,0) and f(m + 1,n + 1) = h(m,n,f(m + 1,n),f(m,n + 1)). Show that if
g0, 81, and A are in C then fis in C. (You may wish to obtain a formula in
terms of gy, g1, and A for the function D defined by Dr = [T +"=r pfim.m)

Exercise 3.6 Let gy, g,, and & be as above, and let $:N?— N be a function
such that ¢(m,n) <n for all m and n. Let f be defined by

f(m,0) =gom, f(0,n) =g,n and
flm +1,n+1) = h(m,n,f(m + 1,¢(m,n)) f(m,n +1)).

Show thatif gy, g;, 4, and ¢ are in C then fis in C. (You may wish to show the
history of f is defined by a double recursion as in the previous exercise.)

3.5 FUNCTIONS OF ONE VARIABLE

The definition of primitive recursive functions requires functions of an
arbitrary number of variables to occur in the defining sequence of a primitive
recursive function of one variable. The remainder of this section, which can
be omitted on a first reading, shows how a primitive recursive function of
one variable can be obtained by a new kind of defining sequence in which all
the functions are of one variable.

We need to define certain special functions. The excess over a square
function, denoted by exq, is defined by exqn = n — (sqrn)?. The function
J*:N*>N is defined by J*(m,n)=((m+n)>+m)*+n. The function
L*:N— N s just exq, while K*:N— N is given by K*n = exq(sqrn). Plainly
J*(0,0) = K*0=L*0=0. Also

(m+n)?+m+1)2=((m+n)?+m)?+2((m+n)’>+m)+1>
>J*(m,n).

Hence sqtJ*(m,n)=(m+n)>+m, so L*J*(m,n)=n. Also, for similar
reasons, sqr(sqr/(m,n)) =m+n, and so K*J*(m,n) =m. Also, from the
definition of L* it is easy to check that if L*(x +1)#0 then L*(x + 1) =
L*x + 1 and K*(x + 1) = K*x. This latter property will be used later, and is
the reason we need to look at J*, K*, and L* aswell as J, K, and L.

48 Primitive recursive functions [Ch. 31

Let J*, be n,;, and define inductively J*, , :N"*'> N by J*, . ,(x,y) =
J*(x,J*,y). Thus J*,=J*. Define J*, ! to be m,;, and inductively define
J* 1" EINS Nt by J* T hx= (K*x,J*,~'L*x). AsJ*, is not a bijection
it does not have a two-sided inverse. However, the remarks already made
show that J*,~1J* x =x for all x, and this is all we shall need.

Proposition 3.5 Let C be a set of total functions which contains the initial
functions and is closed under composition and under iteration of functions of
one variable. If C contains either J,K,L or J*,K*,L* then C is primitive
recursively closed.

Proof We prove the result for J,K,L. The other case is just obtained by
putting * in suitable places.

By Theorem 3.2 it is enough to show C is closed under iteration of all
functions. So let f:N”— N” be a function in C whose iterate is F. Let g:N— N
beJ,fJ,,~1. Since J,K,L are in C, g will also be in C. Let G be the iterate of g.
By hypothesis G is in C.

Hence it is enough to show that F(x,y) =J, ~'G(J,x,y). We prove this by
induction on y. Now J, ~!G(J,x,0) = J,,~ 'J,x = x = F(x,0), as needed. Sup-
pose that the formula holds for y. Then

L. 1GUx,y +1)=1,7'gG(U,x,y) =T, T fl,”'G(J,x,y) =
=fF(x,y),

by the inductive assumption, and this equals F(x,y + 1) by definition.®

Recall that $:N— N comes from f:N— N by iteration starting at 0 if
$¢0=0 and ¢(n+1)=f(pn) for all n; equivalently ¢n=F(n,0) where
F:N?>— N s the iterate of f. We shall call a set of total functions from N to N
good if it satisfies the following three conditions: (i) C contains the successor
function § and the function exq, which we refer to as the initial good
functions, (ii) if fand g are in C so is their sum f + g and their composite fg,
(iii) if fis in C so is its iterate starting at 0. We shall call C very good if C
satisfies (ii) and (iii) and (i’) the functions S, exq, sqr, quo(2,n), and n?
(which we refer to as the initial very good functions) are in C. In fact all good
sets are very good. However, this fact is somewhat messy to prove, and the
heart of the results we are going to look at can be obtained without using this
property; it therefore seems to me simplest to allow both concepts.

Plainly both K* and L* are in any very good set. Also if fand g are in the
very good set C, then so is the composite of J* with f and g, because the
squaring function is in C. Inductively, it follows that if f,, . . ., f,, are in C
then the composite of J,,* with f;, . . ., f,,isin C.

Let C be good. The identity function =, is in C, since it is the iterate
starting at 0 of S. The zero function is in Csince it is the iterate starting at 0 of
sqr. It follows that any constant functionisin C. Also, since Cis closed under
addition, for any f € C and any fixed k € N the function k.f is in C. The
function sg is in C, since it is the iterate starting at 0 of the function which is
constantly 1. Now observe that 2 + 2sgx is 2 if x = 0 and is 4 otherwise. Hence
the function co is in C, since it is given by cox = exq(2 + 2sgx).

Sec. 3.5] Functions of one variable 49

Let a and b be in N with a=b. Now
(@+b)®>+3a+b+1=(a+b+1)*+(a—b)<(a+b+2)>

Hence a — b =exq((a + b)?>+ 3a + b+ 1). It follows that if C is very good,
and f,g € C with fn=gn for all n, then f=g is in C, since (f-g)n=
exq((fn +gn)?+ 3fn +gn + 1). It also follows that for any f and g in C the
product f.g is in C since f.g=((f+g)*>~f>=g?)/2, and both squaring
functions in C and dividing them by 2 lead to functions in C.

Lemma3.6 LetC beaverygoodset. Let fbein Cand let F be the iterate of f.
Letg=FJ*~'. Theng e C.

Proof We have g0 = F(0,0) = 0. We will show first that there is a function
¢:N?>—> N such that ¢J*~! is in C and g(x+ 1) = ¢(x,gx) for all x. Now
gx+1)=F(K*(x+1),L*(x+1)). If L*(x+1)=0 this gives g(x+1)=
K*(x+1). If L*(x+ 1) #0, from what was noted when K* and L* were
defined, it follows that g(x +1)= F(K*x,L*x+ 1) = fF(K*x,L*x) = fgx.
This is a definition by cases, and the formula for definition by cases gives

g(x +1) = ¢(x,gx) where
¢(u,v)=K*(u+1).coL*(u+1) + fv.sgL*(u+1).

Then, as required, the function ¢J* ~! is in C, since the functions sg, co, K*
and L* are in any very good set, and very good sets are closed under
multiplication.

Now define Ax to be J*(x,gx). As gx = L*hx, g will be in C if A is. But
h(x +1)=J*(x+ 1,g(x + 1)) =J*(x + 1,¢(x,gx)). Since x = K*hx, this can
be written as A(x + 1) = 0hx, where Ou =J*(K*u + 1,$J* ~u). Since ¢J* ~!
isin C, so is 0. Finally 40 = J*(0,0) = 0. Hence A is the iterate of 0 starting at
0, and by hypothesis 4 is in C since 0 is.®

Lemma 3.7 Let C be very good, and let C' = {fI*,; all f in C, all n}; in
particular (n=1), C' D C. Then C' is primitively recursively closed.

Proof We have already seen that C contains the zero function and ;. Also
C contains all the components of J*,, =1, since these are repeated composites
of K* and L*. Hence C’ contains all the components of J*,,~1J*,; that is, C’
contains all the projections m,,;.

Let f,g1, . . ., &, be in C. Then the composite of f/*, with g,J*,, . . .,
&J % is fAJ*,, where h is the composite of J*, with g, . . ., g,. We have
already seen that the latter is in C. Hence C’ is closed under composition.

Now let fbe in C. By Lemma 3.6 and the definition of C’ we have FeC’,
where F is the iterate of f. By Lemma 3.5 this shows C' is primitive
recursively closed.®

Lemma 3.8 Let C, be the set of functions f for which there is a sequence f,,
.« fawithf, =fand, for allr < n, either f, is an initial good function or there

50 Primitive recursive functions [Ch.3

is i <r with f, the iterate of f; starting at 0 or there are i,j <r with f,=f;+f; or
f,=f.f;- Then Cyis good.

Let C, be the set of functions f for which there is a sequencef,, . . .,f, with
f.=fand, for all r < n, either f, is an initial very good function or there is i <r
with f, the iterate of f;starting at 0 or there are i,j <r with f, = f; + f; or f, = f.f;.
Then C, is very good.

Proof We prove the first case only; the second case is almost identical, and
both parts are very similar to Lemma 3.1.

Plainly C, contains the initial good functions, for which there is a
sequence of length one. Let fand g be in Cy, and suppose they are defined by
sequencesfi,. . .,f,and g, . . .,&,. Thenfi,. . ., f., 81, - -, &m-fHgisa
suitable sequence for f + g, and similarly for fg, while, if ¢ is the iterate of f
starting at 0, the sequence f;, . . ., f,, is a suitable sequence for ¢.®

The next proposition provides a characterisation of primitive recursive
functions of one variable which does not use functions of more than one
variable.

Proposition 3.9 A function f:N*— N is primitive recursive iff there is a
sequence of functions of one variablef,, . . .,f,suchthatf=f,J*,,and eachf,
is either an initial (very) good function or comes from two eatlier functions by
composition or addition or comes from one earlier function by iteration
starting at 0. In particular f:N— N is primitive recursive iff there is such a
sequence with f=f,.

Proof AsJ*, is the identity, the one-variable case follows at once from the
general case. We shall prove the result when very good initial functions are
permitted. To show that we need only consider good initial functions we
must show that any good set is very good, which will be proved in the next
lemma.

By induction on r, if f can be represented in this form it is primitive
recursive. To show that any primitive recursive function can be expressed in
this form, it is enough, by Lemma 3.1, to show that the set of functions which
can be expressed like this is primitive recursively closed. But this is
immediate from Lemmas 3.7 and 3.8.8

Lemma 3.10 Any good set is very good.

Proof Let C be good. Suppose we show that the function ¢ given by
¢n=n+2sqrnisin C. Then the squaring function is obtained from ¢ + 1 by
iteration starting at 0, using the fact that (n +1)>=n?+2n+ 1.

Let f be defined by fn=con+2co(n—1). Then feC. Here we must
regard n—1 as being given by the formula already considered in the
paragraph before Lemma 3.6. This formula, which involves n?, gives n — 1
for n # 0, while its value is 2 for n = 0. It follows that f0 =1, fl =2, fn = 0 for
all other n.

Let g be the iterate of f starting at 0, so ge C. Then the sequence of values

Sec. 3.6] Some functions which are not primitive recursive 51

of gis 0,1,2,0,1,2,0, . . . Let h be the iterate starting at 0 of the function
n+1+gn,so that h0=0and h(n+ 1) = hn + 1 + ghn. Then heC.

It is easy to check by induction that h(2n) =3n and h(2n+1)=3n+1.
Thus h(2n)—2n=n=h(2n+1)—(2n+1); that is, quo(2,x)=hx+x,
which is in C. Further, sqrn = quo(2,$n + n) showing that sqr is in C.

Now ¢(n+1)=n+1+2sqr(n+1). Hence we may write ¢(n+1)=
¢n +1+20n,wherean =0ifn + lisnotasquare andis 1if n + 1is asquare.

We shall show that n + 1 is a square iff n + 4 is a'square. Once this has
been proved we will have the equation ¢(n+1)=dn+1+
2co(exq(¢pn + 4)). This shows that ¢ is obtained by iteration starting at 0
from the function x + 1 + co(exq(x + 4)). This latter function is in C, and
hence ¢ is in C.

If n+1 is a square, then n=m?+2m for some m, and hence ¢pn=
m?+2m+2m, so ¢n + 4 = (m + 2)2. Conversely if dn + 4 is a square we can
write ¢n =m?+4m for some m. Now m?>n is not possible, since then
sqrn<m and we have n+2sqrn<m?+4m. Also (m+1)?><n is also
impossible, since thensqrn=m+ 1, and n+ 2sqrn=(m+1)? +2(m + 1) >
m?+4m. It follows that m =sqrn, and then n+ 2sqrn=m?+4m gives
n=m?+2m, as needed.®

3.6 SOME FUNCTIONS WHICH ARE NOT PRIMITIVE RECURSIVE

3.6.1 Universal functions for primitive recursion
We have seen that many quite complicated functions are primitive recursive,
and that a wide variety of constructions applied to primitive recursive
functions still give us primitive recursive functions. The reader could be
forgiven for believing that all intuitively computable total functions are
primitive recursive; in fact this was thought to hold for some time in the early
development of the subject. However, this is not true, and we shall give two
examples of such functions. The first example will be theoretical, but the
proof does define a function which could be explicitly calculated. The other
example is of a function which is given by a nested recursion, which at first
sight looks similar to simultaneous primitive recursion and other extensions
of the original notion of primitive recursion.

The theorem below uses techniques similar to those in Proposition 2.3
and Theorem 2.4.

Theorem 3.11 There is an intuitively computable function which is not
primitive recursive.

Proof Suppose we can find a set X of strings on some alphabet which
satisfies the following conditions: (i) we can tell whether or not a string is in
X, (ii) to any string in X corresponds (in some way to be made precise) a
primitive recursive function of one variable, which can be computed when
the string is known, (iii) every primitive recursive function of one variable
corresponds in this way to some string in X.

We have a computable one-one mapping from the set of all strings into

52 Primitive recursive functions [Ch.3

N. Thus we can define, as in Theorem 2.4, a function F:N?— N by requiring
thatif the integer » is the image of a string in X then F(n,x) = fx where fis the
function corresponding to the string, and requiring F(n,x) to be 0 if n is not
the image of a string in X. Plainly Fis total.

As the mapping from strings into N is computable, we can tell whether or
not the integer n corresponds to a string; if so, we can find the string, and by
(i) we can tell whether or not the string is in X. If the string is in X we can find
the corresponding function f and can then compute fx, since f is primitive
recursive. Thus F is computable.

However F cannot be primitive recursive. For if F were primitive
recursive, then the function g defined by gn = F(n,n) + 1 would also be
primitive recursive. Hence, by (iii), it would correspond to a string in X. If
this string maps to k we would have gx = F(k,x) for all x. As in Proposition
2.3, this is impossible. For, putting x = k, we get gk = F(k,k), whereas the
definition of g requires that gk = F(k k) + 1.

We still have to find the set X of strings. One method is given in Chapter
5, where the set called the set of primitive abacus machines will satisfy our
conditions. Another approach is given below, based on the defining
sequence of a primitive recursive function. Take the alphabet to consist of
the symbols Z,S, and P(n,i) where 1 <i=<n, together with symbols R(i,j)
and C(i,j(1), . . ., j(s)) where i,j, and j(1), . . ., j(s) are positive integers.
Suppose the function f is given by the defining sequence f;, . . ., f,.
Corresponding to this we can obtain a string of length n whose rth symbol is
Z.,S, or P(n,i) if f, is the zero or successor function or the projection =,,;,
and is R(i,)) if f, comes by primitive recursion from f; and f;, while it is
C@i,j(1), . . ., j(s)) if f, comes by composition from f; and f,), . . ., fis)-
(Note that one defining sequence may correspond to more than one string,
since, for instance, f, could come by primitive recursion from f; and f; and
also by composition from other functions in the sequence.)

Plainly, not all strings correspond to primitive recursive functions; for
instance the string consisting of one symbol R(2,3) does not correspond to a
function. Suppose we have a string and that the first 7 symbols correspond to
a defining sequence fi, . . ., f,. We must check whether there is a function
fr+1such that the first + 1 symbols of the string correspond to the sequence
fis -« s fs fra1- Obviously this is possible if the (» + 1)st symbol is Z or S or
P(n,i). If this symbol is R(i,j) then we must have i and j at most r; if this
happens then there is a suitable function iff, for some %, f; is a function of k
variables and f; is a function of k + 2 variables, and we then take f, , ; to be
the function of k + 1 variables defined from these by primitive recursion.
Finally if this symbol is C(i,j(1), . . .,j(s)) werequire i,j(1), . . .,j(s) allto be
at most r; if this happens we further require f; to be a function of s variables,
and, for some k, each of f(,,, . . ., fi(s) to be functions of k variables, and then
f,+11s the function of & variables obtained from these by composition. Thus
we can tell whether or not a string corresponds to a primitive recursive
function, and, if so, whether the function is a function of one variable, as
required.®

Sec. 3.6] Some functions which are not primitive recursive 53

3.6.2 Ackermann’s function

We now look at Ackermann’s function A:N>— N which is defined by
AQ0y)=y+1, Ax+1,00=A(x,1) and A(x + 1,y +1)=A(x,A(x + 1,)).
(This is a simpler variant of the function originally considered by Acker-
mann.) We shall show that A is not primitive recursive, but is intuitively
computable. At first sight this nested recursion used to define A is not very
different from the double recursion looked at in Exercise 3.6. However the
fact that A(x + 1,y + 1) is defined from the value of A taken at arguments
depending on A rather than from the values of a previously given function at
arguments depending on A makes the difference. We shall show that A can
be obtained from primitive recursive functions by composition and
minimisation.

If we define a,,:N— N by a,,n = A(m,n) it is clear that a,, , , is obtained
from a,, by iteration, and hence each a,,, is primitive recursive. However this
does not let us conclude that A itself is primitive recursive.

It is easy to find what a,,, is for m =1, 2, or 3. By induction on y we find
that A(L,y)=y+2,A2,y)=2y+3and A3,y)=2"*>-3.

Hence A(4,0)=A(3,1)=5, A4,1)=A(3,A(4,0))=A(3,5)=28-3=
253, A(4,2)=A3,A(4,1))=A(3,253) =2%5-3. Also A(5,0)=A(4,1)=
253, A(5,1)=A(4,A(5,0)) = A(4,253). We see that A(x,y) is extremely
large even for small values of x and y. We will show that A is not primitive
recursive by showing that it increases faster than any primitive recursive
function.

Most proofs of properties of A are proofs by double induction. This is
formalised in the lemma below. (Readers who know about well-oprdered
sets should observe that it amounts to a proof that N? is well-ordered, and
that proof by double induction is a special case of proof by transfinite
induction.)

Lemma3.12 Let P be a property of pairs of integers. Suppose that, for all m
and n, the pair (m,n) has P provided that (m',n") has P for all pairs for which
either m' <m (and arbitrary n') or m' = mand n' <n. Then all pairs have P.

Proof Let S={(m,n);(m,n) does not have P}. We want to show S is
empty. Suppose not. Let T be {m;3n with (m,n) € S}. Then Tis non-empty,
and we define m, to be the smallest member of T. By definition of T,
{n; (mg,n) €S} is not empty, and we let n, be the smallest element of this set.

By definition of S and m, the pair (m',n") has Pif m" <m,, whatever n' is.
By definition of ny the pair (mg,n’) has P for all n' <n,. So, by the
assumption about P, the pair (mg,ng) has P. But (mg,n) is in S, by
definition, and so does not have P. This contradiction shows that § is
empty.®

Proposition 3.13 A can be obtained from primitive recursive functions by
composition and minimisation.

Proof We begin by defining a function f from the set of all finite sequences

54 Primitive recursive functions [Ch.3

of members of N toitself. Let a be the sequence a,, . . ., a,. If k =1 welet fo
be a. If k # 1, the definition of fo will depend on the values of a,_; and a,. If
k#1and a,_,=0then faisay, ..., ap_p a,+1. Ifk#1,a,_,#0 and
a,=0,thenfoisa,,...,a,_,,a,_;—1,1. Finallyifk#1anda,_, #0# a,
then faisa,, . . ., ak_5, ar_ — 1,a,_1,a, — 1. Let F be the iterate of f.

The apparently strange definition of f is made so as to parallel the
definition of A. For instance, A(5,4) = A(4,A(5,3)) = A(4,A(4,A(5,2))) =
A4,A(4,A4,A(5,1)))=. .., and f(5,4)=(4,53), f(4,5,3)=(4,4,52),
f(4,4,5,2) = (4,4,4,5,1).

Because fa depends only on the last two entries of a, we see that if fo = B
then, provided that a has length greater than 1, f(ya) = yp for any sequence
y. Iterating, we see that if F(a,r)=p then F(ya,r)=yB provided that
F(a,r — 1) has length greater than 1.

We now show, by double induction on m and n, that for all m and n there
is r such that F((m,n),r) has length 1, and that, for any such r, if F((m,n),r) =
u, then u = A(m,n).

Suppose that p is the smallest integer such that F((m + 1,n),p) has length
1, and that F((m + 1,n),p) = u, where u = A(m + 1,n). Suppose that q is the
smallest integer such that F((m,u),q) has length 1, and that F((m,u),q) = v,
where v=A(m,u). Then f(m+1,n+1)=(m,m+1,n). By previous
remarks it follows that p is the smallest integer such that
F((m+1,n+1),p+ 1), which equals F((m,m + 1,n),p), has length 2, and
that F((m + 1,n + 1),p + 1) = (m,u). It then follows, setting
r=p+q+1, that r is the smallest integer such that F((m + 1,n+ 1),r) has
length 1, and that F((m + 1,n+ 1),r) = F(m,u) = v. Further
v=A(m,u)=A(m,A(m+1,n))=A(m+ 1,n+1). This is the main step in
the double induction. We also have to look at the case (0,n), which is
immediate, and the case (m + 1,0), which is similar to the case discussed but
simpler.

We now have to define a map from the set of sequences into N. Let o be
a(l), . . ., a(k). We define the code of a to be 2¥T1*<k p #®_ In particular the
code of m,n is 223™5", The set of codes is primitive recursive, since x is a code
iff expox # 0 and length x < exp,x.

We define a function g:N— N by gx = x if x is not a code, and g(codea) =
code(fa). Let G be the iterate of g. Then g is given by a complicated
definition by cases, and we find that g, and hence G, is primitive recursive.
Further the previous discussion of F, and the relation between G and F,
shows that A(m,n) = exp,G(223™5",r), where r = ut(exp,G(2235",f) = 1),
as required.®

The details of this proof are of interest, as well as the result itself. They
show how constructions of a more complicated kind than we have previously
considered can be coded up to give computations in N involving primitive
recursion, composition and minimisation only. An alternative proof of the
proposition will be given later, which proves slightly more.

We now proceed to develop a number of properties of A. The proofs are
by double induction, and many details will be left to the reader.

(I) For all x and y, A(x,y) > y.

Sec. 3.6] Some functions which are not primitive recursive 55

This is obvious for x=0. Now A(x +1,0) = A(x,1), and (inductively)
A(x,1)>1, so A(x+1,0)> 1. Further A(x+1,y+1)=A(x,A(x+ 1,y)) >
A(x+1,y) inductively, and (also inductively) A(x+1,y)>y, so that
A(x+1,y)=y+1. Hence A(x + 1,y + 1) >y + 1, completing the inductive
proof.

(II) For all x and y, A(x,y + 1) > A(x,y).

This is obvious for x=0. Also A(x+1,y+1)=A(x,A(x+1,y))>
A(x+1,y), by (I).

(III) For all x, y,, and y, with y, <y,, we have A(x,y,) < A(x,y,). This is easy
(by ordinary induction on y, — y,) from (II).
(IV)Forallxandy, A(x +1,y)=A(x,y +1).

This is proved by induction on y. For y =0 we have A(x + 1,0) = A(x,1)
by definition.

A(x+1,y+1)=A(x, A(x+1,y)). By the inductive assumption,
A(x+1,y)=A(x,y+1), and by (I) A(x,y+1)=y+2. Hence, by (III),
A(x,A(x +1,y))= A(x,y + 2), which is the required property for y + 1.

(V) For all x and y, A(x,y) > x.

It follows from (IV), by induction on z, that A(x + z,y) = A(x,y + z) for
all x,y and z. In particular A(z,y)=A(0,y+z) for all y and z. As
AQ,y+2z)=y+z+1, we have A(z,y) >y + z =2z, as required.

(VI) For all xy, x,, and y, if x; <x, then A(x,,y) <A(x,,y).

This follows easily (by induction on x, — x,) if we show that A(x + 1,y) >
A(x,y) for all x and y. But, by (IV), A(x + 1,y) = A(x,y + 1), and, by (II),
A(x,y+1)>A(x,y).

(VII) for all x and y, A(x +2,y) > A(x,2y).

We prove this by induction on y. For y = 0 we require that A(x + 2,0) >
A(x,0), which is true by (VI).

Now A(x+2,y+1)=A(x+1,A(x+2,y)). By the inductive assump-
tion, A(x +2,y) > A(x,2y), so by (III) A(x+2,y+1)>A(x+1,A(x,2y))
and this latter is greater than A(x,A(x,2y) + 1) by (IV). From (I) we have
A(x,2y) +1>2y+1, so that A(x,2y) +1=2(y +1). Using (III) again, we
see that A(x,A(x,2y) + 1) = A(x,2(y + 1)), which gives what we want for
y+1.

We shall say that a total function f:N¥— N is within level r if, for all
x,fx < A(r,X) where X = maxx;. Because A(4,y) is so large, it seems likely
that any function which occurs in practice will differ at only finitely many
places from a function within level 4.

Proposition 3.14 Let f be primitive recursive. Then f is within level r for
somer.

Proof We shall show that the set of functions which are within level r for
some r is a primitive recursively closed set, which will give the result by
Lemma 3.1.
Since A(0,y) =y + 1, the initial functions are all within level 0.
Let f come by composition from g:N"— Nand h,, . . ., h,:N¥—-N. Letg

56 Primitive recursive functions [Ch.3

be within level r and let 4; be within level s; for i<m. Let s = max(r,s,, . . .,
s,.) + 3. We shall show f is within level s.

Write y; = hx, Y = maxy,. Since s =2 we have, by (IV), A(s,X) = A(s —
1,X+1)=A(s-2,A(s—1,X)). As s—1>s; we have A(s—1,X)>
A(s;,X) >y, since h; is within level s, By (III) it follows that A(s,X)>
A(s—2,Y). Ass—2=r,by (VI)itfollows that A(s —2,Y) = A(r,Y) =gy, by
definition of r. Since fx = gy, fis within level s.

Now let fcome from g and A by primitive recursion. Let g be within level
and let 4 be within level 5. Let p = max(r,s) + 3. We shall show f is within
level p.

We first show that for any x and any y € N we have A(p —2,X +y) >
f(x,y). This is proved by induction on y.

Wheny =0, f(x,0) =gx< A(r,X). Asr<p—2,wehave A(r,X) <A(p —
2,X +0) by (VI), as required.

Now suppose the result is true for y and prove it for y +1. Write
z=f(x,y), so that f(x,y + 1) = h(x,y,z). Our inductive assumption is that
A(p—2,X+y)>z. Alsoweknowthat A(p —2,X +y) > X + y = max(X,y).
Hence, by (), A@-2X+y+1)=A@P-3,A(p—-2,X+y))>
A(p —3,max(X,y,z)). By (VI) this latter is at least A(s,max(X,y,z)) which is
greater than h(x,y,z) by definition of s. This completes the inductive step.

Finally A(p,max(x,, . . ., x;,y)) = A(p,max(X,y)) =
A(p —2,2max(X,y)), by (VII),= A(p — 2,X + y) (since 2max(X,y) > X + y),
and we have just proved this latter is at least f(x,y), as needed.®

Proposition 3.15 A is not primitive recursive.

Proof We use the diagonal argument as usual. Suppose A were primitive
recursive. Then the function f:N— N defined by frn = A(n,n) + 1 would also
be primitive recursive. By the previous lemma there would be some r such
that fn < A(r,n) for all n. In particular we would have fr<A(r,r), which
contradicts the definition of A.®

We have seen that A can be obtained from primitive recursive functions
by minimisation and composition. The next result shows that A can be
obtained by minimising a primitive recursive function. It follows that
unbounded minimisation can lead from a primitive recursive function to one
which is not primitive recursive.

Proposition 3.16 The set {(x,y,z); z = A(x,y)} is primitive recursive.

Corollary Lety be the characteristic function of {(x,y,z); z = A(x,y)}. Then
X is primitive recursive and A(x,y) = nz(x(x,y,z) = 0).

Proof The corollary is immediate from the proposition.

We use the notation of Proposition 3.13. Let ¢(x,y) be the least ¢ such
that F((x,y),t) haslength1. The proof in Proposition 3.13 that thereissuch a ¢
gives the following properties for ¢:$(0,y) =1, ¢(x +1,0) =1+ ¢(x,1) and
o(x+1y+1)=1+¢(x+1,y) + d(x,u) where u=A(x+1,y) and so
A(x,u)=Ax+1,y+1).

We shall show inductively that ¢(x,y) < (A(x,y) + 1)*for allxand y. This

Sec. 3.7] Justifying definitions by primitive recursion 57

is obvious for x = 0. Suppose that ¢(x,1) <(A(x,1) + 1)*.As
A(x,1)=A(x+1,0) we have
O(x+1,00<1+(A(x+1,0)+1)*<(A(x +1,0) + 1)**1, as required.

Now suppose that ¢(x + 1,y) < (A(x + 1,y) + 1)**! and that
o(x,u) < (A(x,u) +1)*, where u = A(x + 1,y). We know that
A(x+1y+1)>A(x+1,y), so that A(x+1y+1)=Ax+1,y)+1. It
follows that

A+ Ly+D)+1)** ' —(Ax+1y+ 1)+ 1)
=Ax+1Ly+ 1)+ 1)Ax+1y+1)=
AFE+1Ly)+1+1D)*(Ax+1y)+)= (Ax+1,y) +1)* 1 + 1.

Since A(x + 1,y + 1) = A(x,u), this gives

Ax+1Ly+ D+ 1) =0o(xu)+o(x+1,y)+1
=¢o(x+1,y+1),

completing the inductive step.

We know that G(223*57,f)=2.34"» if t=¢(x,y), while
expoG(223*57,t) #1 for t<o(x,y). It follows that if z#A(x,y), then
G(223*57,t) # 2.3 for all ¢, and, in particular, that G(223*5”,(z + 1)*) # 2.3%.
But if z=A(x,y) then (z+ 1)*= ¢(x,y) and so G(223*5,(z + 1)*) =2.3%.
Thus {(x,y,z);z=A(x,y)} is defined by the primitive recursive property
G(2?3*57,(z+1)*)=2.3*.m

Exercise 3.7 Show that a function f can be written as ut(v(x,t) = 0) for some
primitive recursive function v iff the graph of f, that is, {(x,y);fx =y} is a
primitive recursive set.

Exercise 3.8 Let f have primitive recursive graph. Show that if f takes on
only the values 0 and 1 then f is primitive recursive.

Exercise 3.9 Let F be the function of Theorem 3.11. Show that the
function coF cannot be primitive recursive. Deduce that there is an intuiti-
vely computable function which cannot be written as ut(v(x,) = 0) for any
primitive recursive function v.

3.7 JUSTIFYING DEFINITIONS BY PRIMITIVE RECURSION

Let g:N*— N and h:N**2— N be functions. We now show that there is a
function defined from g and A by primitive recursion, and that this function is
total if g and A are total. The proof may seem very complicated. I have seen
alleged proofs simpler than the one given here (and the other proof given in
the exercises), but they were wrong. The trouble is that, while the existence
of such a function seems intuitively obvious, detailed justification is needed,
and it is quite common to take for granted part of what needs proof.

A subset A of N**2 will be called admissible if it satisfies the following
two conditions: (i) if gx is defined then (x,0,gx) € A, (ii) if (x,y,z) € A and
h(x, y, z) is defined then (x, y + 1, h(X, y, z))e A. Plainly N**?2 is admissible.

Let A, be a collection of admissible sets. It is easy to check that N A4, is

58 Primitive recursive functions [Ch.3

admissible. In particular let F be the intersection of all admissible sets. Then
Fis admissible. Also (since Fis a subset of every admissible set) no proper
subset of F is admissible.

Lemma 3.17 If gx is defined then (x,0,z) € Fiff z= gx. If gx is not defined
then there is no z with (x,0,z) € F.

Suppose either that gx is defined and z # gx or that gx is not defined and z
is arbitrary. In either case we see that F— {(x,0,z)}, the set obtained by
removing (x,0,z) from F, is still admissible. Hence this set cannot be a
proper subset of F, and so (x,0,z)¢F.m

Lemma 3.18 (i) For some x and y, suppose that (x,y,z) € F and that

(x,y,w)éF for w #z. If h(x,y,z) is defined then (x,y +1,w) € Fiff w=

h(x,y,z). If h(x,y,z) is not defined then there is no w with (x,y + 1,w) € F.
(ii) If there is no z with (x,y,z) € Fthen there is no w with (x,y + 1,w) € F.

Proof Suppose either that there is no z with (x,y,z) € F or that there is
exactly one such z and, in the latter case, that if h(x,y,z) is defined then
w# h(x,y,z); in all other cases w can be arbitrary. Then we can easily see
that F — {(x,y + 1,w)} is still admissible. It follows, since no proper subset of
F is admissible, that (x,y + 1,w)¢F.m

From the two previous lemmas it follows, by induction on y, that for
every x and y there is at most one z with (x,y,z) € F. Hence we can define a
function f:N**1— N by f(x,y) = z iff (x,y,z) € F. By Lemma 3.17, if gx is not
defined then f(x,0) is not defined, while if gx is defined then, as F is
admissible, we have f(x,0) = gx. Also if f(x,y) =z and h(x,y,z) is defined
then, by Lemma 3.18, we have f(x,y + 1) = h(x,y,z). If either f(x,y) is not
defined or f(x,y) =z and h(x,y,z) is not defined, then by Lemma 3.18
f(x,y + 1) is not defined. Hence fis defined by primitive recursion from g and
h.

Lemma3.19 Let f be obtained by primitive recursion from g and h. If both g
and h are total then f is total.

Proof 1t is easy to check, by induction on y, that for every x and y there is
some z with (x,y,z) € F. By definition of f, this means that f(x,y) is defined
foreveryxand y.m

In the exercises an alternative proof is given that definition by primitive
recursion is meaningful.

Exercise 3.10 Show that there is at most one function defined by primitive
recursion from g and A.

Exercise 3.11 Show that the intersection of admissible sets is admissible.

Exercise 3.12 Fill in the omitted details in the proofs of the lemmas above.
A function ¢:N**1— N will be called allowable if it satisfies the following

three conditions: (i) given x, either ¢(x,y) is defined for all y or it is not

defined for any y or there is some n such that ¢(x,y) is defined iff y < n, (ii) if
d(x,0) is defined then gx is defined and $(x0) = gx, (ii) if both ¢p(x,y) and

Sec. 3.7] Justifying definitions by primitive recursion 59

o(x,y + 1) are defined then ¢(x,y + 1) = h(x,y,d(xy)). Allowable functions
exist; for instance, the function such that ¢(x,y) is defined only if y =0 and
¢(x,0) is defined iff gx is defined, and then ¢(x,0) = gx, is allowable. Notice
that an allowable function is not necessarily defined by primitive recursion
from g and A, since we do not require ¢(x,y +1) to be defined whenever
d(x,y) and A(x,y,d(x,y)) are defined.

Exercise 3.13 Show, by induction on y, that if ¢ and y are allowable
functions and both ¢(x,y) and y(x,y) are defined then d(x,y) = y(x,y).

It follows that we can define a function fby requiring f(x,y) to be defined
iff there is some allowable function defined on (x,y) and then requiring f(x,y)
to be ¢(x,y) for any allowable function ¢ defined on (x,y). The exercise
shows that we get the same value for f(x,y) whatever allowable function we
choose.

Exercise 3.14 Show that f is allowable.

Exercise 3.15 Let ¢ be an allowable function such that ¢(x,y) and
h(x,y,p(x,y)) are both defined but ¢(x,y +1) is not defined. Define a
function y to be equal to ¢ wherever ¢ is defined, and with y(x,y + 1)
defined to be A(x,y,$(x,y)) and with y not defined anywhere else. Show that
y is allowable.

Exercise 3.16 Use the previous exercise to show that if f(x,y) and
h(x,y,f(x,y)) are both defined then f(x,y+1) is defined and equals

h(x,y.f(x,y))-

It follows from the last exercise that fis defined from g and 4 by primitive
recursion.

Exercise3.17 Let gand & be total. Using Exercise 3.15, show that if there is
an allowable function defined for some x on all y with y < n then there is also
an allowable function defined for that x on all y<n+ 1. Deduce that f is
total.

Exercise 3.18 We took for granted in section 3.6 that the equations for
Ackermann’s function defined a unique function, which is total. Prove this.
(A proof by double induction can be given along similar lines to the current
section. Simpler is to show by induction on m that for each m there is a
unique function a,,, such that a,,n satisfies the defining condition for A(m,n),
and that each function a,,, is total.)

4

Partial recursive functions

In this chapter we formalise the theory of Chapter 2, with a class of functions
called partial recursive functions taking the place of intuitively computable
functions. In later chapters we shall see the evidence suggesting that the
intuitively computable functions are exactly the partial recursive functions.

4.1 RECURSIVE AND PARTIAL RECURSIVE FUNCTIONS

We alreay know what is meant by minimisation of a function. We need also a
related concept.

Definition The function g:N*-N comes from f:N**! 5N by regular mini-
misation if

(a) g comes from f by minimisation,
(b) fistotal,
(c) gistotal.

Plainly (c) can be replaced by (c') Vx3y(f(x,y)=0).

A set C of functions is said to be closed under (regular) minimisation if
g € C whenever f € C and g comes from f by (regular) minimisation; we
already know the meanings of ‘initial function’, ‘closed under composition’
and ‘closed under primitive recursion’.

Definition The function fis called partial recursive if there is a sequence of
functions. fi, . . ., f, such that f,=f and, for all r < n, either f, is an initial
function, or there are §,j(1),...,j(k), all less than r, with f, coming from f; and
ficys+++sfjky by composition, or there are i and j less than r with f, coming

Sec. 4.1] Recursive and partial recursive functions 61

from f; and f; by primitive recursion, or there is i less than r with f, coming
from f; by minimisation. If, in addition, whenever the last condition applies
the minimisation is regular, then fis called recursive.

We know that composition, primitive recursion, and minimisation when
applied to intuitively computable functions produce intuitively computable
functions. Hence partial recursive functions are intuitively computable.

The next lemma has a proof almost identical to the proof of Lemma 3.1;
the details will be left to the reader.

Lemma 4.1 The set of partial recursive functions contains the initial
functions, and is closed under composition, primitive recursion, and mini-
misation. Also, any set containing the initial functions and closed under
composition, primitive recursion, and minimisation will contain every
partial recursive function.

The set of recursive functions contains the initial functions, and is closed
under composition, primitive recursion, and regular minimisation. Also,
any set of functions containing the initial functions and closed under
composition, primitive recursion, and regular minimisation will contain
every recursive function.m

This lemma tells us that the set of partial recursive functions (recursive
functions) is the smallest set containing the initial functions, and closed
under composition, primitive recursion, and minimisation (regular minimis-
ation). There are many situations where we want the smallest set with
certain properties, and begin by defining a set constructively by procedures
similar to the above definitions, and then showing, as in the above lemma
and Lemma 3.1, that it has the required properties.

Obviously, the set of recursive functions is primitive recursively closed.
In fact, the main reason for considering primitive recursively closed sets was
to obtain results which are valid both for the set of primitive recursive
functions and for the set of recursive functions.

Since Ackermann’s function may, by Proposition 3.13, be written as
A(m,n)=d(m,n,s) where s=pt(y(m,n,t)=0), for some primitive recursive
functions ¢ and y, (and Proposition 3.16 gives an even simpler form) we see
that it is recursive.

Plainly, every recursive function is both partial recursive and total. The
converse is true, as will be shown in Corollary 1 to Theorem 4.2 below. But
the converse is not, as might be thought, obvious. Suppose we take some
recursive function f:N—N and some partial recursive g:N—N whose domain
contains fN. Then the composite gf is both partial recursive and total; but
there is no immediately obvious reason why gf should be recursive.

Theorems 4.2 and 4.3 below are crucial to the development of the
theory. However, they will not be proved until Chapter 7 (with an alterna-
tive proof in Chapter 9), although they will be used immediately. They are
stated for functions of one variable, but may be extended to functions of any
number of variables, using the bijection J,:N*>N. Direct proofs are

62 Partial recursive functions [Ch. 4

possible, but the details seem to me to be both complicated and not
particularly natural.

Theorem 4.2 Let f:N—N be partial recursive. Then there are primitive
recursive u:N—N and v:N?>-N such that fx=u(ut(v(x,f)=0)).

We have seen in Exercise 3.9 that there are recursive functions which
cannot be written as ut(v(x,t)=0) for any primitive recursive v. The function
u (and the function U of Theorem 4.3) can be taken to be K. This is shown in
section 9.6.

Corollary 1 A function which is both partial recursive and total is
recursive.

Proof Let fbe both partial recursive and total, and write fin the form given
by the theorem. Now u and v, being primitive recursive, are recursive. Since
fis total, for every x there must exist ¢ such that v(x,£)=0. It follows that the
one minimisation used is a regular minimisation, and so f'is recursive.®

Corollary 2 The set of partial recursive functions may be defined in either
of the following two ways:

(a) it is the smallest set containing the initial functions, and closed under
composition of partial functions, primitive recursion of partial func-
tions, and minimisation of total functions;

(b) it is the smallest set containing the initial functions, and closed under
composition of partial functions, primitive recursion of total func-
tions, and minimisation of total functions.

Proof That we can refer to the smallest set having the properties of (a) or
(b) follows from the remarks made after Lemma 4.1. Evidently the set of
partial recursive functions contains the set defined in (a), which in turn
contains the set defined in (b). Evidently this latter set contains all primitive
recursive functions, and will also contain all functions of the form
u(ut(v(x,t)=0) with u and v primitive recursive. Hence, by the theorem, the
set defined in (b) contains all partial recursive functions.®

Some authors take (a) or (b) as the definition of partial recursive
functions (or the related constructive definition). This is unsatisfactory for a
number of reasons. If we are concerned with a set of partial functions, it is
aesthetically unpleasant to restrict minimisation to total functions if this is
not necessary. Also, as shown for intuitively computable functions in
Corollary 2 to Theorem 2.4 (which extends to partial recursive functions, as
indicated later), it is not possible to tell, from a definition of a function (by a
suitable sequence of simpler functions, by an abacus machine — these are
defined in the next chapter — or other methods), whether or not the

Sec. 4.2] Recursive and recursively enumerable sets 63

function is total. The restriction to this case seems to arise from these
authors considering pseudo-minimisation of partial functions (which does
not preserve computability) instead of the correct notion of minimisation.

The next theorem extends Theorem 4.2, and is the analogue in the
current theory of Theorem 2.4.

Theorem 4.3 (Kleene’s Normal Form Theorem) There exist primitive
recursive functions U:N—N and V:N>-N with the following property. To
any partial recursive f:N—N there is k such that fx=U(ut(V(k,x,t)=0)) for
all x.

4.2 RECURSIVE AND RECURSIVELY ENUMERABLE SETS

Just as partial recursive functions are a formal version of the intuitive notion
of computable functions, we have a similar formal version of the intuitive
notions of decidable and listable sets.

Definition The set A is recursive if its characteristic function is a recursive
function. The set A is recursively enumerable (usually abbreviated to r.e.) if
either A= or A=fN for some recursive function f:N—N.

Most of the results of Chapter 2 translate immediately to this situation,
simply replacing ‘decidable’ by ‘recursive’, ‘listable’ by ‘recursively enumer-
able’, ‘intuitively computable’ by ‘partial recursive’, and ‘computable total’
by ‘recursive’; we may also have to use Corollary 1 to Theorem 4.2 which
tells us that a function which is both partial recursive and total is recursive.
All these results will be stated, but the proof will only be given where it
cannot be obtained by this direct translation.

Proposition 4.4 Let A be a subset of N. Then the following properties of A
are equivalent:

(a) Aisr.e.,

(b) A is empty or A=fN, where f:N—N is primitive recursive,
(c) A=fN, where f:N—N is partial recursive,

(d) the partial characteristic function of A is partial recursive,
(e) A is the domain of some partial recursive function.

Proof We show that (b) is true if (c) is true; we will use Theorem 4.2 and
the ideas of Proposition 2.1. As for the other parts, if (b) is true, obviously
(a) is true, and the remainder of the proof comes from Proposition 2.1 by the
translation already mentioned.

Suppose (c) holds. By Theorem 4.2, there are primitive recursive
functions u:N—N and v:N*-N such that fr=u(ut(v(x,f)=0)). If A= then
(b) holds. If A+ take any age A. Define F:N>-N by

64 Partial recursive functions [Ch. 4

F(x,n)=u(ut < n(v(x,1)=0)) if 3t < n(v(x,1)=0),
F(x,n)=a, otherwise.

Now F is primitive recursive, being given by a definition by cases from
primitive recursive functions and predicates. Exactly as in Proposition 2.1,
FN?=A, and A is the range of the primitive recursive function F/~'.m

The next proposition has the same proof as Proposition 2.2.

Proposition 4.5 Let A be a subset of N. Then A is recursive iff both A and
N—-Aarer.e.m

The informal versions of the next results were given as exercises in
Chapter 2. As they are of importance later, a full proof is given now.

Proposition 4.6 Let A and B be r.e. subsets of N. Then both AUB and
ANB are r.e. If :N—N is partial recursive then the counter-image 0.”'A of
A under o and the image aA of A under o are r.e. Further, if A and o are
recursive then a ™' A is recursive.

Proof 1If either A or B is empty, there is nothing to prove. So we may take
recursive functions f and g such that A=fN and B=gN. Then AUB=hN,
where A is defined by h(2n)=fn, h(2n+1)=gn, or, equivalently,

hx=f(quo(2,x)) if rem(2,x)=0, hx=g(quo(2,x)) otherwise.

Then h is recursive, being given by a definition by cases, andso AUB isr.e.
by definition.

By Proposition 4.4, there are also partial recursive function ¢ and y from
N to N such that ¢ has domain A and y has domain B. Then ¢+ is partial
recursive and its domain is AN B. By Proposition 4.4, this shows that AN B is
r.e.

o~ 'A is the domain of ¢a, and aA=afN, so they are bothr.e. If a is total
then N—a 'A=a"!(N-A),soitisr.e. if N—Aisr.c.m

Proposition 4.7 Let A be a subset of N. Then A is recursive and infinite iff
there is a strictly increasing function f:N—N such that A=fN.

Proof Suppose there is such a function f. Since f is strictly increasing, we
see that fn=n for all n. Plainly A is then infinite. Also we find thata € A iff
dn<a(fn=a). Since the quantification is bounded, this is a recursive
property, and so A is recursive.

Now let A be recursive and infinite and let x be its characteristic function.
Define ¢ by ¢px=uy(y>x and yxy=0). Since y is recursive, ¢ is partial
recursive. Since A is infinite ¢ is total. Hence ¢ is recursive.

Define f to be the iterate of ¢ starting at a,, where q, is the smallest
element of A. Then f is recursive, and f is strictly increasing, since
f(n+1)=d(fn)>fn by the definition of ¢.

We still have to show A=fN. Take any a € A. Since the smallest element
ay of A is f,, we may assume a>a,. Since fis strictly increasing there will be n

Sec. 4.2] Recursive and recursively enumerable sets 65

such that fn<a and f(n+1)=a. Now f(n+1) is, by definition, the smallest
element of A which is greater than fn. Thus the conditions fn<a<f(n+1)
ensure that a=f(n+1).m

If we want to use a definition by cases with partial recursive functions the
methods used in Chapter 3 do not work, since, in general, the relevant sum is
nowhere defined. However, a different technique permits definition by
cases here.

Proposition 4.8 For i=0,1,..., n—1 let f:N—N be partial recursive func-
tions and let A; be r.e. subsets of N with A;NA;j empty for i¥j. Let f be given
by fx=fx for x € A; (and fx not defined if x €U A;). Then f is partial
recursive.

Proof We know that domain f; is r.e., and hence so is A; N domain f;.
Replacing A; by this set, we may assume that A; C domain f;. We may also
assume A; is not empty, since we can just ignore any empty A;. Hence there
are recursive functions ¢; such that A;=¢d;N . The functions f;¢; will also be
recursive, being partial recursive and total. Hence, using definition by cases
for recursive functions, we have recursive functions ¢ and g given by
dx=¢,(quo(n,x)) if rem(n,x)=i and gx=f;p,(quo(n,x)) if rem(n,x)=i.

Plainly pN=UA,. Also, if a € A; and ¢x=a we must have rem(n,x)=i
and a=¢;(quo(n,x)); we would then also have fa=fa=gx. Hence f=gy,
where v is defined by ya=ux(dx=a). Since v is partial recursive, so is f.B

Kleene’s Normal Form Theorem tells us that there is a universal partial
recursive function from N? to N (and tells us about the form of such a
function). Consequently, results using the existence of a universal compu-
table function may be proved in the current context. In particular we have
the following theorem.

Theorem 4.9 There is a set K which is r.e. but not recursive.

Proof Take Uand V asin Theorem 4.3. Define K to be the set of those x for
which U(ut(V(x,x,t)=0)) is defined (so in fact K={x;3t(V(x,x,t)=0)}). As
in Theorem 2.5 the set K has the required properties.®

Rice’s Theorem and the Rice-Shapiro Theorem may also be proved for
partial recursive functions by a direct translation of the earlier proofs.
However, the proof requires the analogue of Lemma 2.6, which has no
obvious proof at this stage. The relevant lemma will be proved in Chapter 7,
with an alternative proof in Chapter 10.

Exercise 4.1 Let A be an infinite r.e. set. Show that A=fN for some
recursive one-one f.

66 Partial recursive functions [Ch. 4

Exercise 4.2 Let A be an infinite r.e. set. Show that A contains an infinite
recursive set. (Compare these exercises with Exercises 2.12 and 2.13.)

Exercise 4.3 Let A be a subset of N. Show that the following are equiva-
lent; (i) A is r.e., (ii) for every k, there is a primitive recursive subset B of
N¥*1 such that 4 = {x; 3y with (x, y)e B}, (iii) for some k there is a recursive
subset C of N¥*! such that A={x;3y with (x,y) € C}.

Exercise 4.4 Using the previous exercise or otherwise, show that if 4 is an
r.e. subset of N2 then so is {[m, n); 3x <n with (m,n)eA}.

S

Abacus machines

The original abacus was a frame of wires, on each of which beads were free
to move. By moving the beads from one side of the frame to the other, quite
complex calculations could be performed, and the abacus (which some
readers may recognise as the counting-frame of their childhood) was used in
many parts of the world as a cash-register. A trained abacus operator could
work extremely fast, and in the early days of electronic computers, a contest
between an abacus operator and a computer operator was won by the abacus
(mainly because feeding information into the computer was slow).

The machines we call abacus machines are given that name because their
fundamental operations consist only of adding or subtracting 1
(corresponding to the move of a bead from one side to another). The first
section contains the definition and some formal properties, and
computations by these machines are defined and discussed in the second
section. We then proceed to prove that partial recursive functions are abacus
computable, and conversely that abacus computable functions are partial
recursive. The final section looks at a related class of machines.

5.1 ABACUS MACHINES

Abacus machines will be defined as strings on a certain alphabet, and the
reader should review the properties of strings in Chapter 2. The alphabet
consists of infinitely many symbols a, and s, the left parenthesis (and
infinitely many right parentheses),; the subscript k in a,, s, and), can be
any positive integer.

We define inductively simple abacus machines of depth n and abacus
machines of depth » as follows.

(1) a, and s, are the only simple abacus machines of depth 0,

68 Abacus machines [Ch. S

(2) the abacus machines of depth n are the strings M,...M,, where each M; is
a simple abacus machine of depth < n, and some M; has depth exactly n (we
allow r =1, so that any simple abacus machine is an abacus machine),

(3) the simple abacus machines of depth n + 1 are the strings (M), where M
is an abacus machine of depth n.

Examples s,a, is an abacus machine of depth 0, and (s,a;), is a simple
abacus machine of depth 1. Hence (s,4,),54a- is an abacus machine of depth
1, and ((5,4,)154a7)4 and ((s,a,),54a;); are simple abacus machines of depth
2. Also ((5,01)154a7)4as and ((s.a,),54a)4(5s)sa¢ are abacus machines of
depth 2. We see that the depth is the number of nestings of parenthesis pairs
inside each other.

It is possible to tell whether or not a string is an abacus machine, and, if
$0, it is possible to find the simple abacus machines M,,...,M, of which it is
the product. The next two lemmas show this. The reader may decide to take
these results for granted, on the reasonable belief that if this were not so a
different definition would have been chosen.

Lemma 5.1 (i) Any abacus machine has the same number of left and right
parentheses.

(ii) Any proper initial segment of a simple abacus machine has more left
parentheses than right parentheses.

Proof The proofs are by induction on the depth.

Plainly (i) holds for simple abacus machines of depth 0. If (i) holds for
simple abacus machines of depth =<n, it obviously holds for all abacus
machines of depth <n. If (i) holds for all abacus machines of depth n, it
plainly holds for all simple abacus machines of depth n + 1, and so (i) holds
for all abacus machines by induction.

Plainly (ii) holds for simple abacus machines of depth 0, since these do
not have any proper initial segments at all. Suppose (ii) holds for all simple
abacus machines of depth <n, and let M be a simple abacus machine of
depth n + 1. By definition M is (M,...M,),, where each M; is a simple abacus
machine of depth <n. Now the proper initial segments of M are just (and
the strings (M,...M;_ M for some i, where M/ is an initial segment of M.
By (i) each of M,,...,M;_, has the same number of left and right paren-
theses, while by (i) or the inductive assumption M; has at least as many left
parentheses as right parentheses. Thus any proper initial segment of M has
more left parentheses than right parentheses, and (ii) follows by induction.®

Lemma 5.2 (i) We can tell whether or not a string is an abacus machine.
(i) If a string S is an abacus machine, there is exactly one value of r and
one sequence of simple abacus machines M,...,M, such that S is M,...M,.
(#id) If a string S is a simple abacus machine there is exactly one k and one
abacus machine M such that S is (M),.

Sec. 5.2] Computing by abacus machines 69

Proof First note that (iii) is obvious, since k is determined by the fact
that), is the last symbol of S, and M is obtained from § by deleting the first
and last symbol of S.

Now suppose S is an abacus machine, so that S is M,...M, for some
simple abacus machines M,,...,M,. By Lemma 5.1 M, has the same number
of left and right parentheses, while any proper initial segment of M, has
more left parentheses than right parentheses. Hence M, is the smallest
initial segment of S for which the segment has the same number of left
parentheses and right parentheses. If M, is not the whole of S, then we can
write S as M,S’'. Then, for similar reasons, M, will be the smallest initial
segment of §' that has the same number of left parentheses and right
parentheses. This procedure can be continued, and determines M,,...,M,
(and hence r itself), proving (ii).

Finally consider any string S. As we have just seen S cannot be an abacus
machine unless it has an initial segment with the same number of left and
right parentheses. So we determine whether or not there is such a segment,
and if so let S, be the smallest such segment. If S is not S, write S as S,5' for
some string S'. Then S is an abacus machine iff S, is a simple abacus machine
and S’ (if it exists) is an abacus machine.

Now S, is a simple abacus machine if it is a, or s,; otherwise it is a simple
abacus machine only if its first symbol is (and its last symbol is), for some k
anditis not just (),. We can test whether or not this condition holds, and if so
we can write S as (§"), for some string $”. Then in this case §, is a simple
abacus machine iff " is an abacus machine.

Thus the procedure to test whether or not a string is an abacus machine is
the following one, which works inductively by reducing the string to one or
more smaller strings, which in turn have to be tested, and so on. Given a
string S, we first see if it has an initial segment with the same number of left
parentheses and right parentheses; if not, S is not an abacus machine. If so,
we find the smallest such string S;. If S, is not the whole of S we write S as
§,8'. If S is justa,ors,and Sis S, then S is a simple abacus machine while if
S is §;5' then § will be an abacus machine iff S’ is an abacus machine.
Otherwise $ will not be an abacus machine unless S, is (5"), for some k and
some string S”, and we can check whether or not this holds. If it does hold S
will be an abacus machine iff $" and S’ (or just $" if S is ;) are abacus
machines.®

5.2 COMPUTING BY ABACUS MACHINES

As we have mentioned in Chapter 2, intuitively a computer may be regarded
as having registers, each of which can contain an arbitrary natural number.
Since there is no reason to place any fixed limit on the number of registers, it
may be convenient to assume that there are an infinite number of registers,
only a finite number of which are in use at any time. We now proceed to
formalise this.

We look at the set L consisting of those infinite sequences of natural

70 Abacus machines [Ch.5

numbers which have only a finite number of non-zero terms. We use small
Greek letters for members of ¥ and the corresponding subscripted ordinary
letters for the terms of the sequence. For instance we write & = (x;,x,,...)
and N = (¥;,),,...). In line with the intuitive notions, we refer to x; as the
entry in register i of £, and say that register i is empty if x;, = 0.

We shall define, by induction on the depth, to each abacus machine M a
function from £ to I, which we shall also denote by M. The effect of M on § is
denoted by EM (and not by ME) for reasons which will soon be seen. We
often refer to £EM as the output of M on the input £.

We begin by defining &a, to be n where y,=x;fori#k and y, =x, + 1.
Similarly &s, is { where z;=x, for i # k and z, = x, ~ 1.

Next we explain how to define the function on an abacus machine of
depth n if we know how to define it on all simple abacus machines of depth
sn. If MisM,...M,we define EM to be EM,...M,; that is, EM is obtained by
applying M, to &, then applying M, to the result, and so on. Because we have
used the notation £EM, in this formula the machines M,,...,M, are applied in
the order in which they are naturally read. Observe that Lemma 5.2(ii) is
needed to ensure that £M is uniquely given from M.

Finally we have to explain what (M), is, assuming that we already know
how M acts. We define §(M), as EM’ (that is, EM...M, where there are ¢
copies of M) where ¢ is chosen to be as small as possible such that the kth
register of EM* is empty. Of course if EM* has its kth register non-empty for
all ¢ then §(M), is not defined. Also if x, =0 then ¢t =0 and &(M)y is just &.

Examples Three particular machines will be of special interest to us and
will be given individual names.

Clear, is the machine (s,),. This machine keeps subtracting 1 from
register k, until that register becomes empty. That is §(s,) . is , where y; = x;
for i # k and y, = 0, which we can refer to as clearing register k.

Descopy,, , is the machine (s,a,),. This repeatedly subtracts 1 from
register p and adds 1 to register g, stopping when register p is empty. Thus
EDescopy, i8N, where y; = x; fori#p,q,andy, =0, y, = x, + x,. We could
have named this machine Add, , for obvious reasons, but we will be more
concerned with the fact that if x, =0 then y, =x,, i.e. the machine copies
register p into the originally empty register g. However register p is emptied
in the process, which we therefore call a destructive copy.

If we wish to make a copy without destroying the contents of register p,
we must use a third register which is initially empty. Thus we define
Copy,,q.- to be (s,a,a,),(s,a,),. This machine will leave all registers except
p»q,r unchanged. If x, = x, =0, then after applying (s,a,a,), we get { where
z,=2,=x, and z,=0. Applying (s,a,), to this will give n where y, =2z,
(since this does not change register g) and y, =0 and y, =z,. Thus y,=x,
and y, =x, while y, = 0 which is also the value of x,.

As another example observe that a,s, defines the identity function, while
s,a, does not.

We now say that a machine M computes a function f.N"— Nif M, on the

Sec. 5.2] Computing by abacus machines 71

input & which has x; in register i for i < n and all other registers empty has EM
defined iff fx is defined and then has fx in register 1 of EM. Note that M
defines a function from N” to N for every n. We say that f is abacus
computable if it is computable by some abacus machine.

For convenience, whenever we say that some 1 has fx as the contents of
some register this will be taken to mean also that n exists iff fx is defined.

Since, by Lemma 5.2, we can tell whether or not a string is an abacus
machine, Theorem 2.4 is valid if computable means abacus computable.

The next group of lemmas shows that, when considering abacus comput-
able functions, we can put the input variables and the output value in any
registers we like, and can also keep registers unchanged. We need to define
the registers used by the machine M and prove an easy lemma first.

Definition (i) The machines a, and s, use only register k,

(ii) The machine M,...M, uses those registers which are used by M, for at
least one i,

(iii) The machine (M), uses register k and those registers used by M.

Notice, however, that unless the register k is already used by M, then the
machine (M), is uninteresting. For if register k is not used by M, then §(M),
is defined iff x, = 0 and then {(M), =&.

The following lemma is almost obvious, if we consider what is meant by a
machine using a register. The detailed proof, which would use induction on
the depth, is left to the reader.

Lemma 5.3 (i) Let EM =n. Then y; = x; if register i is not used by M.
(i) Let EM = n, and let &' have x;= x; for all i such that register i is used by
M. Then &'M =n' where y; =y, for all i such that register i is used by M.

Lemma 5.4 Let f:N"— N be abacus computable. Then there is a machine
which on the input with x;in register i for i < n, remaining registers empty, has
output with fx in register 1 and the remaining registers empty.

Proof Let M compute f. Choose m = n such that the registers used by M are
among registers 1,...,m. By Lemma 5.3(i), on the given input the output will
have at most registers 1,...,m non-empty. Then the machine
MClear,...Clear,, will do what we want.®

Lemma 5.5 Let f:N"— N be abacus computable. Then there is a machine
which on every input with x; in register i for i < n will have output with fx in
register 1.

Proof Take M and m as before. By Lemma 5.3(ii) M has output with fx in
register 1 on every input with x; in register i for i<n and with registers

72 Abacus machines [Ch. S

n+1,...,m empty. It follows that the machine we want, which has suitable
output even when registers n + 1,...,m are not empty for the input, will be
Clear,, . ,...Clear,,M.®

Lemma 5.6 Let f:N"— N be a function such that there is a machine M which
has output with fx in register k on the input with x; in register i for i<n,
remaining registers empty. Then f is abacus computable.

Proof If k= 1thereis nothingto prove. Otherwise MClear,Descopy, , will
transfer the value fx, which occurs in register £ of the output of M, into
register 1 where it is needed.®

Lemma 5.7 Leti(1),...,i(n) be distinct registers. Suppose there is a machine
M which, on input having x,,...x,, in registers i(1),...,i(n) respectively, and
remaining registers empty, has output with fx in register k for some k. Then f is
abacus computable.

Proof We first look for a machine which, on input with x; in register j for
J<n, remaining registers empty, has output with x; in register i(j) for j<n,
remaining registers empty. We have to be careful since the set {i(1),...,i(n)}
may meet the set {1,...,n}. So we take r(1),...,r(n) distinct from all of
1,...,n,i(1),...,i(n). Then the machine K defined as
Descopy, ,(1)..-Descopy,, ,.yDescopy,1y.i1y- --DeSCOPY,(y.icny does this, and
KM will have output with fx in register k when the input has x; in register j for
j=<n, remaining registers empty. The result follows by Lemma 5.6.8

Lemma 5.8 Letf:N"— N be abacus computable. Let i(1),...,i(n) be distinct
registers. Let j(1),...,j(p) be any registers (for any p) and k a register different
from these. Then there is a machine which, on any input with x,,...,x, in
registers i(1),...,i(n) has output fx in register k, and has the output values in
register j(1),...,j(p) the same as the input values in these registers.

Proof Take m=i(1),...,i(n),j(1),...,j(p),k. Let M be a machine which on
any input with x,,...,x, in registers 1,...,n has output with fx in register 1.
This is possible by Lemma 5.5. Obtain M’ from M by increasing each
subscript by m (for instance, if m = 5 and M is (a,s,), then M’ will be (a¢s,),).
Plainly M’, on any input with x,,... x,, in registers m + 1,...,m + n, will have
output with fx in register m + 1 and with the first m registers having the same
value on output as on input.

Let K be the machine Clear,, . ,...Clear,,, ,Clear,,, ,.,. Let L be the
machine COpYi(l).m+ ILm+n+1-* 'Copyi(n).m +nm+n+1- Then KL, onany i"PUt
with x,,...,x, in registers i(1),...,i(n), will put x,,...,x, into registers
m+1,...,m+ n and will leave registers 1,...,m with the same values for the
output as they had for the input. Thus KLM'Clear,Descopy,, . ;. is the
machine we want.®

Sec. 5.3] Partial recursive functions 73

Lemma 5.9 Let f,,....,fN'"—>N be abacus computable functions. Let
i(1),...,i(n) be distinct registers. Let j(1),...,j(p) and k(1),...,k(r) be distinct
registers (which need not be distinct from i(1),...,i(n)). Then there is a
machine, which on any input with x,...,x,, in registers i(1),...,i(n) has output
with f.x in register k(q) for q<r and has the output values in registers
j(1),...,j(p) the same as their input values.

Proof Take m=i(1),...,i(n),j(1),...,j(p),k(1),....k(r). Let M, be a
machine which, on the given input, has output with f_x in register m + q and
otherwise leaves registers 1,...,m +r with the same values on output that
they had on input. This is possible by Lemma 5.8. Then the machine
M,...M,, on the given input, has output with f x in register m + g forallg <r
and with the first m registers having the same value for the output as they had
for the input. Thus M,...M,K is the machine we want, where K is
Clearyyy...Clear,(,)Descopy . + 1 k1)---D€SCOPY s 4 1 k(). B

Exercise 5.1 Find abacus machines which compute n2, 2", and other
functions which you care to try. (There are systematic ways of constructing
suitable machines given in the next section.)

5.3 PARTIAL RECURSIVE FUNCTIONS

Theorem 5.10 Partial recursive functions are abacus computable.

Proof By Theorem 3.2 it is enough to show that the set of abacus
computable functions contains the initial functions and is closed under
composition, iteration and minimisation.

Plainly Clear, computes the zero function and a, computes the successor
function. Using Lemma 5.6, we see the machine a,s, is enough to show all
projection functions are abacus computable.

Let fi,....f:N"— N and g:N"— N be abacus computable. Let M be a
machine which on input x; in register i for all i <n has output with f x in
register q for all g <r. Such an M exists by Lemma 5.9. Let M’ be a machine
which on any input with y,in register g for g < r has output with gy in register
1. Then MM' computes the composite of g with f,,....f,.

Let f:N"— N”" be abacus computable; that is, the components f:N*— N
are all abacus computable. By Lemma 5.9 there is a machine M which, on
any input with x,,...,x,, in registers 1,...,n will have output with f x,...,f,x in
registers 1,...,n, and with register n + 1 having the same value for the output
that it had for the input. Then (Ms,,), ., computes the iterate of f.

Finally, let f:N"*!— N be abacus computable. Let M be a machine which
on any input with x,,...,x,,,, in registers 1,...,n+1 has output with
f(x1,...,%,, +1) in register n+ 2, and with the first n + 1 registers having the
same values for the output that they had for the input. Consider the machine
M(a, M), ., on the input which has x,,...,x, in registers 1,...,n and all the
remaining registers empty. This will first compute f(x,0), putting the result in

74 Abacus machines [Ch. 5

register n + 2; here x = (xy,...,x,). If f(x,0) = 0, the machine now stops with
Oinregister n + 1. Otherwise it first adds 1 to register n + 1, then computes f
on the result; that is, it computes f(x,1). If f(x,1) =0 it stops and has 1 in
register n + 1. Otherwise it adds 1 to register n+ 1 and computes f of the
result; that is, it computes f(x,2), putting the result in register in n +2. If
f(x,2) =0, it will stop and will have 2 in register n + 1. We see that, on the
given input, the output has py(f(x,y) = 0) in register n + 1. Thus this function
is also abacus computable, as required.®

Conversely all abacus computable functions are partial recursive. A
simple direct proof of this fact will now be given. Another proof of this is
contained in Chapters 6 and 7, where it is also shown that these functions are
exactly the functions computed by very different machines, and where
Kleene’s Normal Form Theorem is also proved.

Let M be an abacus machine, and let m be such that at most registers
1,...,m are used by M. Then M defines a function, which we will still call M,
from N to N™ as follows. We define (x,,...,x,,)M to be (y,,...,y,,) iff M on
some input with x; in register i for all i < m has output with y;in register i for
alli<m. By Lemma 5.3, if this holds for one such input, then it holds for all
such inputs.

Theorem 5.11 The functions M:N"— N are partial recursive.

Proof We use induction on the depth of M. The result is clear if M is a, or

Sk
If M is M,...M,, then the function M is the composite of the functions

M,,...,M,, and hence it is partial recursive if each function M; is partial

recursive.

Let M' be (M),. We have already remarked that if register k is not used
by M, then the function M’ is not defined on any input with x, # 0, while it is
the identity on any input with x, = 0. Thus M’ is partial recursive in this case.
Now suppose register k is used in M. Then xM' is just xM*, where s is defined
to be pt(xM* has 0 in register k). Hence the function M’ is obtained from the
function M and a projection function by the use of iteration, composition
and minimisation. It follows that M’ is partial recursive if M is.®m

Corollary Let f:N"— N be abacus computable. Then f is partial recursive.

Proof Let fbe computed by M. Take m = n so that at most registers 1,...,m
are used in M. Then fis obtained by composition from the function sending x
to (xy,...,%,,0...,0)eN™, the function M and a projection function. Since M
is partial recursive, so is f.®

Let the abacus machine M compute F:N>— N. Then, for each x, the
function sending y to F(x,y) is computed by Descopy, , a,*M. This provides
a justification of Lemma 2.6.

We now show that a certain subset of the set of all abacus machines,
which we call the set of primitive abacus machines, will compute exactly the

Sec. 5.3] Partial recursive functions 75

set of primitive recursive functions. There may also be abacus machines not
in this set which happen to compute primitive recursive functions.

Definition (i) The machines a, and s, are the only simple primitive abacus
machines of depth 0.

(ii) An abacus machine of depth n is primitive iff it is M,... M, where each
M, is a simple primitive abacus machine of depth <n.

(iii) The simple primitive abacus machines of depth n+ 1 are the
machines (Ms,), where M is a primitive abacus machine of depth n and
register k is not used in M.

Notice that all the machines Clear, Descopy and Copy (with any
subscripts) are all primitive machines. Hence Lemmas 5.4 to 5.8 are valid if
we restrict consideration to primitive machines only.

Theorem 5.12 A function is primitive recursive iff it is computable by a
primitive abacus machine.

Proof If we look at the proof of Theorem 5.10 it is clear that the set of
functions computable by primitive abacus machines contains the initial
functions and is closed under composition and iteration. Hence it contains
all primitive recursive functions.

Suppose M’ is (Ms,), where register k is not used in M, and let m be such
that at most registers 1,...,m are used in M’'. Take xeN™ and let y be the
result of applying the function M x, times to x. Because register k is not used
in M it is easy to see that xM' has register k empty but agrees with y in all
other registers. Thus the function M’ is primitive recursive if the function M
is primitive recursive. The remainder of the proof follows by the arguments
of Theorem 5.11 and its corollary.®

Notice that we can tell whether or not a string is a primitive abacus
machine. This provides the justification needed for Theorem 3.11 where it
was shown that there are intuitively computable total functions which are
not primitive recursive.

Exercise 5.2 Let fcome by primitive recursion from the abacus computable
functions g and 4. Find an abacus machine which computes f. (If you solve
this exercise directly, compare your construction with Theorem 3.2. If you
have difficulty, look at the proof of Theorem 3.2, and try to convert it into a
construction.)

Exercise 5.3 Find abacus machines which compute some of the primitive
recursive functions defined in Chapter 3. (One way is to use the results of this
chapter, including the previous exercise, starting from a defining sequence
for the function.)

76 Abacus machines [Ch. 5

5.4 REGISTER PROGRAMS

Abacus machines are one of a variety of machines which are sometimes
called unlimited register machines, for obvious reasons. We now look at
another class of unlimited register machines, which will be called register
programs. (They are often called register machines, but I prefer to call them
programs to emphasise the difference between their definition and that of
abacus machines. It is true, though, that abacus machines can be regarded as
just a different type of program.) Historically register programs (in one of a
number of different versions) were introduced before abacus machines were
invented. It seems to me that the approach using abacus machines leads to
rather easier proofs than are found using register programs.

A register program is defined to consist of a number of lines, each line
consisting of a label and an instruction. The labels are just the integers 1,...,r
for some r, different lines having different labels. Instead of referring to the
line with label i, this line will simply be called line i. The instructions are of
four kinds, namely the add and subtract instructions a, and s, the stop
instruction STOP and the jump instructions J,(i;,i,) where i; and i, are
labels (which may be the same). We also require that the last line (that is, the
line with label r) has STOP as its instruction.

A configuration of a program P is a pair (i,§) where i is a label and £€X.
We call (i,§) terminal if line i has STOP as its instruction. If line i has
instruction a, we say (i,£) yields (i+1,£') where x;=x; for i#k, and
X; =X, +1; similarly if line i has instruction s, then (i,£) yields (i +1,&")
where x}=x, for i # k and x} = x, = 1. If line i has instruction J,(i,,i,) then
(i,€) yields (i,&) if x, = 0 and yields (i,,&) if x, #0.

The computation of P starting from & is the finite or infinite sequence
(il ’r;l)’ (i27£2)"'Where (ilaél) is (l,ﬁ), (imE.m))’lelds (in+ 1’€n+ l) unless (i,,,F,,,)
is the last term of the sequence, and (i,,,£,) is terminal if it is the last term of a
finite sequence.

The function P:X— X is given by £ P = 1) if the computation of P starting
from € is a finite sequence whose last term is (i,n) for some i.

We call two programs (or two machines, or a program and a machine)
equivalent if they define the same function from X to X.

Readers who are familiar with programming will observe that register
programs are badly structured because of the jump instructions, which can
be written in the form IF x, =0 GOTO i; ELSE GOTO i,. By contrast, the
abacus machine (M), can be expressed as WHILE x, # 0 DO M, and abacus
machines can be regarded as well-structured programs. We will see that it is
easy to find a register program equivalent to a given abacus machine. Itis not
possible to find an abacus machine equivalent to a given register program P,
but for each n there is an abacus machine equivalent to P on the set of those &
with x; =0 for i > n. This is hard to prove directly (it amounts to finding a
WHILE program corresponding to a program with GOTO); it will follow
from results in Chapter 7.

We say that the function f:N"— N is computed by the register program P
if P started on (1,£), where 11is the label of the first line and & has x; in register

Sec. 5.4] Register programs 77

i for i=<n and all other registers empty, ends in a configuration (k,n) for
some k where n has fx as its first entry. Then Proposition 5.13 shows that
partial recursive functions may be computed by register programs. Because
of the bad structure of register programs, it is not as easy as in Theorem 5.11
to show that functions computed by register programs are partial recursive.
This will be shown informally in Chapter 8. It also follows from the results on
Turing machines and the fact that register programs can be simulated by
Turing machines; this is briefly indicated in the next chapter.

Proposition 5.13 To any abacus machine there is an equivalent register
program whose only stop instruction is on the last line.

Proof Plainly the programs 1:a, 2:STOP and 1:s,, 2:STOP are equivalent to
the machines a, and s,. Suppose P; with labels 1,...,r and P, with labels
1,...,s are equivalent to M, and M,. Relabel the lines of P, as r+ 1,...,r +s
(of course changing the jump instructions from J, (iy,i,) to J,(r + iy,r + iy)).
Replace line r (the only stop instruction of P,) by r:J,(r + 1,r + 1), but leave
the other lines of P; unchanged. Let P,P, be the program with these r +s
lines. Then P, P, is equivalent to M, M,.

For plainly the computation of P,P, starting from § is the same as the
computation of P, starting from & until, if ever, the latter reaches a pair
(r,m). This happens iff EM, is defined and equals 1. At this point (r,n) yields
(r+1,m). Because of the way the lines of P, relate to those of P,P, the
computation of P, P, now follows that of P,, and ends with (r + s,{) iff the
computation of P, starting with) ends with (s,£), as needed. The result for a
product M,...M,, follows similarly.

Now suppose M is equivalent to P with labels 1,...,r. Let P’ be obtained
as follows. First increase all labels of P (including references to them in jump
instructions) by 1, and delete the last line. Add new lines r + 1:J,(r + 2,2)
and r +2:STOP and a new first line 1:J,(r +2,2). Then P’ is equivalent to
(M)

For suppose we start the computation of P’ from &. If x, = 0, we jump at
once to line r + 2, the STOP line. Otherwise we move to line 2, from which
we follow the computation of P (with labels increased by 1) until, if ever, P
reaches the terminal pair (r,n), at which point P’ will be at (r+ 1,n). If
¥ =0, we move to the STOP line. Otherwise we go back to line 2 and follow
the computation of P again starting from n, and so on, as needed.®

Note that any program is equivalent to one whose only stop instruction is
on the last line. For if the last line has label r we need only replace a line
i:STOP with i:J,(r,r). When the new program reaches line i, it will immedi-
ately move to line r and will then stop.

Further, any program is equivalent to one in which the instruction s, is
used only when register k is non-empty; this will be used in Chapter9. For let
P be a program with labels 1,...,r and let line i be i:s,. First increase the
labels i + 1,...,r of P (and any reference to them in jump instructions) by 1.

78 Abacus machines [Ch. 5

The program P’ is to consist of these lines i +2,...,r + 1, together with the
lines 1,...,i — 1 of P and the two lines i:J, (i + 2,i + 1) and i + 1:s,.

For P, the pair (i,£) yields (i + 1,£") where x; = x;fori # kand x; = x, ~ 1;
in particular &' = § if x, = 0. For P’ the pair (i,£) yields (i + 2,£) if x, = 0, and
this is just (i + 2,£’) in this case; if x, # 0, then (i,£) yields (i + 1,£) which in
turn yields (i +2,£'). Asline i + 2 of P’ is just line i + 1 of P (and the same for
later lines) we see that the computation of P’ from a given start is just a
simple modification of the corresponding computation of P, as needed.

Finally we note that in P’ line i + 1 is only reached from line i (and not by
a jump instruction from any other line), and by the definition of line i it can
only be reached if x, #0, as required. We perform this change of program
for each s, instruction of P.

We can also replace our program by an equivalent one in which any line
j:J(G',j") has j' and j” different from j. This result will also be needed in
Chapter 9. All we need to do is increase by 1 the labels on lines j+ 1,...,r,
and replace line j by j:J,(j + 1,j + 1) and add the extra line j + 1:J,(j’ ,j").

It is also possible to use different varieties of jump instructions. The
unconditional jump J(i,) has (i,£) yielding (i,,£) for any & if line i is i:J(i,).
This is the same as i:J,(i;,i;). The instructions J,(i;) and J;(i;) jump when x,
is or is not 0 respectively, and otherwise move to the next line; that is, the
line i:J,(i,) is just i:J,(iy,i + 1) and the line i:J;(i,) is just i:J, (i + 1,i;). The
exercises show how these instructions may be used instead of our instruc-
tions J.(i;,5,).

Exercise 5.4 Show that any program is equivalent to one whose jump
instructions are all of the form J,(i) or J;(i).

Exercise 5.5 Show that any program is equivalent to one whose jump
instructions are all of the form J (i) or J(i). (In this and the next exercise you
may want to use Exercise 5.4.)

Exercise 5.6 Show that any program is equivalent to one whose jump
instructions are all of the form J;(i) or J(i).

Exercise 5.7 Show that, for any n, any program is equivalent on the set of
those & with x; =0 for i > n to a program whose jump instructions are all of
form J,(i).

Exercise 5.8 Let P be a program whose only jump instructions are of form
J(i). Show that if £ is a sequence for which the registers used by P contain
large enough values then the computation of P starting from & never uses a
jump instruction. Deduce that for any such & the output is obtained by
adding (or subtracting) suitable constants to each register used by P.

Sec. 5.4] Register programs 79

Exercise 5.9 Show that there are programs which are not equivalent to a
program whose only instructions are of the form J,(i).

Exercise 5.10 Show that any program is equivalent to a program in which
the only instructions are of form J;(i). (Use Exercise 5.6. Whenever we want
to perform an instruction J(i) we precede it by an instruction a,, then use the
instruction Ji(i) and follow it by an instruction s,. The details are tricky,
because we may have to put in other g, or s, instructions to allow for the fact
that a line may be reached either by a jump instruction or from the preceding
line.)

6

Turing machines

Abacus machines and register programs are sometimes referred to as
random access machines. This means that all registers are equally easy to
write to or read from. By contrast, if the contents of the registers are
arranged linearly on a tape then to look at the seventeenth register it is first
necessary to go through all the previous sixteen registers. Readers with
experience of microcomputers are likely to have met this problem; data on
tape is much more slowly accessed than data on disk.

The original computing machine defined by Turing is now known as a
Turing machine; its information is contained on tape in the above way.

In the first section we shall define Turing machines and give examples of
them. In the second section we shall show that abacus computable functions
are computable by Turing machines.

6.1 TURING MACHINES

6.1.1 Turing

Turing gave the following justification that the class of machines now known
as Turing machines captures the intuitive idea of computability. (He
discussed computable real numbers rather than computable functions, but
this distinction is unimportant. Note that he used the word ‘computer’ to
mean a person making a computation, and not to refer to a machine; when
he wrote computing machines as now known had not been built.)

Turing wrote:

We may compare a man in the process of computing a real number
to a machine which is only capable of a finite number of conditions
q1, 92, - - - » r Which will be called ‘m-configurations’. The machine
is supplied with a ‘tape’ (the analogue of paper) running through it,

Sec. 6.1] Turing machines

and divided into sections (called ‘squares’) each capable of bearing
a ‘symbol’. At any moment there is just one square, say the rth,
bearing the symbol S(r), which is ‘in the machine’. We may call this
square the ‘scanned square’. The symbol on the scanned square may
be called the ‘scanned symbol’. The ‘scanned symbol’ is the only one
of which the machine is, so to speak, ‘directly aware’. However, by
altering its m-configuration the machine can effectively remember
some of the symbols which it has ‘seen’ (scanned) previously. The
possible behaviour of the machine at any monent is determined by
the m-configuration g,, and the scanned symbol S(r). This pair g,
S(r) will be called the ‘configuration’: thus the configuration deter-
mines the possible behaviour of the machine. In some of the
configurations in which the scanned square is blank (i.e. bears no
symbol) the machine writes down a new symbol in the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but
only by shifting it one place to right or left. In addition to any of
these operations the m-configuration may be changed. Some of the
symbols written down will form the sequence of figures which is the
decimal of the real number being computed. The others are just
rough notes to ‘assist the memory’. It is only these rough notes
which are liable to erasure.

It is my contention that these operations include all those which
are used in the computation of a number.

Later in his paper Turing wrote:

Computing is normally done by writing certain symbols on paper.
We may suppose this paper is divided into squares like a child’s
arithmetic book. In elementary arithmetic the two-dimensional
character of the paper is sometimes used. But such a use is always
avoidable, and I think that it will be agreed that the two-dimen-
sional character of paper is no essential of computation. I assume
then that the computation is carried out on one-dimensional paper,
i.e. on a tape divided into squares. I shall also suppose that the
number of symbols which may be printed is finite. If we were to
allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extent. The effect of this restriction of the
number of symbols is not very serious. It is always possible to use
sequences of symbols in the place of single symbols. Thus an Arabic
numeral such as 17 or 999999999999 is normally treated as a single
symbol. Similarly in any European language words are treated as
single symbols (Chinese, however, attempts to have an enumerable
infinity of symbols). The differences from our point of view between
the single and compound symbols is that the compound symbols, if
they are too lengthy, cannot be observed at one glance. This is in
accordance with experience. We cannot tell at a glance whether
9999999999999999 and 999999999999999 are the same.

81

82

Turing machines [Ch. 6

The behaviour of the computer at any moment is determined by
the symbols which he is observing, and his ‘state of mind’ at that
moment. We may suppose there is a bound B to the number of
symbols or squares which the computer can observe at one moment.
If he wishes to observe more, he must use successive observations.
We will also suppose that the number of states of mind which need
to be taken into account is finite. The reasons for this are of the same
character as those which restrict the number of symbols. If we
admitted an infinity of states of mind, some of them will be
‘arbitrarily close’ and will be confused. Again, the restriction is not
one which seriously affects computation, since the use of more
complicated states of mind can be avoided by writing more symbols
on the tape.

Let us imagine the operations performed by the computer to be
split up into ‘simple operations’ which are so elementary that it is
not easy to imagine them further divided. Every such operation
consists of some change of the physical system consisting of the
computer and his tape. We know the state of the system if we know
the sequence of symbols on the tape, which of these are observed by
the computer (possibly with a special order), and the state of mind
of the computer. We may suppose that in a simple operation not
more than one symbol is altered. Any other change can be split up
into simple changes of this kind. The situation in regard to the
squares whose symbols may be altered in this way is the same as in
regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are
always ‘observed’ squares.

Besides these changes of symbols, the simple operations must
include changes of distribution of observed squares. The new
observed squares must be immediately recognisable by the
computer. I think it is reasonable to suppose that they can only be
squares whose distance from the closest of the immediately pre-
viously observed squares does not exceed a certain fixed amount.
Let us say that each of the new observed squares is within L squares
of an immediately previously observed square.

In connection with ‘immediate recognisability’, it may be
thought that there are other kinds of square which are immediately
recognisable. In particular, squares marked by special symbols
might be taken as immediately recognisable. Now if these squares
are marked only by single symbols there can only be a finite number
of them, and we should not upset our theory by adjoining these
marked squares to the observed squares. If, on the other hand, they
are marked by a sequence of symbols, we cannot regard the process
of recognition as a simple process. This is a fundamental point and
should be illustrated. In most mathematical papers the equations
and theorems are numbered. Normally the numbers do not go
beyond (say) 1000. It is, therefore, possible to recognise a theorem

Sec. 6.1] Turing machines

at a glance by its number. But if the paper was very long, we might
reach Theorem 157767733443477; then, further on in the paper, we
might find ‘... hence (applying Theorem 157767733443477) we
have ...’. In order to make sure which was the relevant theorem we
should have to compare the two numbers figure by figure, possibly
ticking the figures off in pencil to make sure of their not being
counted twice. If in spite of this it is still thought that there are other
‘immediately recognizable’ squares, it does not upset my contention
so long as these squares can be found by some process of which my
type of machine is capable. This idea is developed in III below.
The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.
(b) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a
change of state of mind. The most general single operation must
therefore be taken to be one of the following:

(A) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been
suggested, by the state of mind of the computer and the observed
symbols. In particular, they determine that state of mind of the
computer after the operation is carried out.

We may now construct a machine to do the work of the
computer. To each state of mind of the computer corresponds an
‘m-configuration’ of the machine. The machine scans B squares
corresponding to the B squares observed by the computer. In any
move the machine can change a symbol on a scanned square or can
change any one of the scanned squares to another square distant not
more than L squares from one of the other scanned squares. The
move which is done, and the succeeding configuration, are deter-
mined by the scanned symbol and the m-configuration. The
machines just described do not differ essentially from computing
machines as defined [earlier], and corresponding to any machine of
this type a computing machine can be constructed to compute the
same sequence, that is to say the sequence computed by the
computer.

In his section (IIT) (referred to above) Turing continued:

We suppose, as [previously], that the computation is carried out on
a tape; but we avoid introducing the ‘state of mind’ by considering a

83

84 Turing machines [Ch. 6

more physical and definite counterpart of it. It is always possible for
the computer to break off from his work, to go away and forget all
about it, and later to come back and go on with it. If he does this he
must leave a note of instructions (written in some standard form)
explaining how the work is to be continued. This note is the
counterpart of the ‘state of mind’. We will suppose that the
computer works in such a desultory manner that he never does more
than one step at a sitting. The note of instructions must enable him
to carry out one step and write the next note. Thus the state of
progress of the computation at any stage is completely determined
by the note of instructions and the symbols on the tape. That is, the
state of the system may be described by a single expression
(sequence of symbols), consisting of the symbols on the tape
followed by A (which we suppose not to appear elsewhere) and then
by the note of instructions. This expression may be called the ‘state
formula’. We know that the state formula at any given stage is
determined by the state formula before the last step was made, and
we assume that the relation of these two formulae is expressible in
the functional calculus. In other words, we assume there is an axiom
A which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage
to the state formula at the preceding stage. If this is so, we can
construct a machine to write down the successive state formula, and
hence to compute the required number.

6.1.2 Turing machines
We take a finite set A, called the alphabet, with elements ay, ..., a, called
letters; the element ay, which plays a special role, is called blank.

Consider a tape, infinite in both directions, divided into squares. We
place an element of A on each square, requiring all but finitely many squares
to be blank. More formally, we could look at a function f from Z to A, with
fn=ay for |n| large enough. However, the informal approach is easier to
follow, and it will normally be used. Instead of an infinite tape, we could
consider a finite tape with arrangements for adding on extra squares of tape
when required. In describing what symbols are on the tape, there is no need
to mention any of the infinite run of consecutive blanks to the left and right
of the non-blank portion, but there is no harm in doing so. For instance, if
the alphabet consists of a,b,c, and 0 (blank) then the sequences a0bb00ca,
00a0bb00ca, and 0a0bb00ca0 all refer to the same sequence of symbols on
the tape.

In order to transfer information to and from the tape, we need a
read—write head. At any moment this is positioned over one square of the
tape, which we refer to as the square being scanned. We shall consider the
head as capable of moving (though in real life it is more likely that it is the
tape which moves, as in a cassette recorder). A tape description consists of a
sequence of symbols telling us what is on the tape (so this sequence must

Sec. 6.1] Turing machines 85

contain all the non-blank symbols) together with a note of which square is
being scanned. This is usually done by underlining the scanned symbol. For
instance, in the example above, a0bb00ca shows the first 0 being scanned,
a0bb00ca shows the second b being scanned, and a0bb00ca shows the third 0
being scanned. We insist that the sequence is long enough to show the
scanned square; thus, in our example, if we wish to scan the 0 which is two
squares to the left of the initial a, we must write the tape description as
00a0bb00ca.

"~ Our machine has to have a finite set Q of states. (In a physical machine,
these could be the positions of cog-wheels, the positions of switches, and so
on.) Atany moment the machine is in some state. A configuration consists of
a tape description and a state. (Note that the words ‘state’ and ‘config-
uration’ are not used in the way Turing used them.) We write ugav to mean
the configuration which is in state g with tape description uav, where a is a
letter and u and v are strings of letters. What the machine does next depends
only on its state and the symbol being scanned. We now make a formal
definition.

Definition A Turing machine (by quadruples) consists of a finite alphabet A
as above, a finite set Q of states, and a set of quadruples which can be either
of form qaa'q’, where q and q' are states and a and a’ are letters, or of one of
the forms gaRq’ orqaLq',where g and q' are states, aisaletter,and Rand L
are two new symbols. We require also that at most one quadruple begins
with any given pair q,a.

More formally, we could define the machine to consists of A, Q, and a subset
of OXAX(AU{R,L})xQ. However, the informal approach is clearer.
The quadruples are meant to tell us how the machine acts. Let C be the
configuration ugav. If no quadruple begins with g,a we say Cis terminal (the
machine is given no instructions what to do in this case, so it stops). If there is
aquadruple gaa’q’ then Cyields uq'a’v (the machine goes into the new state
q' and writes a’ on the scanned square instead of a). If there is a quadruple
gaRq' then C yields uaq'bv’, where the string v is written as bv’ for some
letter b and some (possibly empty) string v’ (the machine changes state to g’
and the head moves one square right). If there is a quadruple gaLq' then C
yields u'q'bav, where u is u'b with b a letter and u' a possibly empty string
(the machine changes state to ¢’ and the head moves one square left). The
letters R and L are meant to signify ‘right’ and ‘left’. Note that the scanning
head is a read—write head, since it must be able to read the letter on the
scanned square (in order to determine what action to take), and must also be
able to write to the scanned square. Note that if more than one quadruple
began with a given pair we would not be able to tell what configuration
followed C. Nonetheless, non-deterministic machines, which do not satisfy
this condition, are still of interest, though we shall not consider them (see
section 8.1.4 for a brief discussion of them). We could also consider
machines with several tapes and several heads on each machine. Such
machines, as indicated in section 8.1, do not compute any additional

86 Turing machines [Ch. 6

functions; however, they may compute faster than the machines defined
here.

The computation of the Turing machine T starting with the configuration
C, is defined to be a finite or infinite sequence of configurations C;, C,, ...
such that either the sequence is infinite and C, yields C,.; for all r or the
sequence is finite with its last term C, being terminal and C, yielding C, . for
all r<n.

We usually require one state to be called the starting state. We can then
talk of the computation starting with a given tape description, meaning that
the starting configuration is this tape description in the starting state.

It is also often convenient to consider machines which have a halting state
h. This means that a configuration is terminal iff it is in state A.

Seven special examples of Turing machines on the alphabet {0,1} will be
of special importance. The first of these is the machine R which has
quadruples gORq' and g1Rq’. This has starting state g and halting state q’.
When started, it moves one square right and halts. Similarly the machine L
with quadruples g0Lq' and q1Lq' has starting state g, halting state g, and
moves one square left and then halts.

The machine P, has quadruples g00g’ and gq10q’, while P, has quad-
ruples g01¢q’ and q11q'. Both of these have starting state q and halting state
q'. Py prints 0 on the scanned square and then halts, while P, prints 1 and
then halts.

The machine R* has quadruples g0Rq’, q1Rq’, q'1Rq’, and q'00g". This
has starting state g and halting state ¢". When started, this machine moves
one square right (whatever the symbol initially scanned). It then keeps
moving right as long asitis scanning 1. Assoon as it scans 0 it changes state to
q" and halts. Thus R* moves to the first blank to the right of the initially
scanned square. Similarly the machine L* with quadruples g0Lq’, q1Lq’,
q'1Lq', and q'00q" has starting state g, halting state ¢", and it moves to the
first blank to the left of the initially scanned square and then halts.

The final special machine is Test. This has quadruples g00g, and gq11g;.
When started in state q it does not change the tape description, but moves
into state gq or g, according to the scanned symbol being 0 or 1.

Let T be a Turing machine. The names given to the states are not of great
importance, and if we rename the states we shall regard the machine as
unchanged. For instance, in a machine with two states it does not matter
whether the states are called go and g, or ‘up’ and ‘down’, or ‘in’ and ‘out’,
or ‘on’ and ‘off’; in a machine with seven states, we could call the states gy,

.., geor ‘red’, ‘orange’, ‘yellow’, ‘green’, ‘blue’, ‘indigo’, and ‘violet’. Of
course, in making such a renaming, we must rename each state in each
quadruple in which it occurs. By renaming states, we can assume that two (or
more) given Turing machines T and T have no states in common (or only
certain specified states in common).

In particular, let T be a Turing machine with a halting state, and let 7" be
any Turing machine. Name the states so that the halting state of T is the
starting state of 7" and the machines have no other state in common. Let TT'
be the machine whose states are those of T and 7' and which has as

Sec. 6.1] Turing machines 87

quadruples all the quadruples of T and all the quadruples of T". (Note that,
because the only state of T which is a state of T" is the halting state, no pair
begins two quadruples.) Let the starting state of TT" be the starting state of
T. When this machine is started on a tape description it will follow the
computation of T until, if ever, this computation halts. When this happens,
because the halting state of T is the starting state of T", it will follow the
computation of T".

More generally, if Ty, ..., T, are Turing machines of which T, ..., T,_;
all have halting states, we can construct the machine T ... T,. In particular,
if T is a machine with a halting state, we can take each T; to be T, in this case
the product is just written T".

Let Ty and T; be Turing machines on the alphabet {0,1}. Let Test be the
machine constructed above. Suppose the starting state of Test is not a state
of Ty or Ty, that the states go and g, of Test are the starting states of T and
Ty, and that Ty and T; have no states in common. Denote by Test{T,, T;}
the Turing machines whose quadruples are those of Test, of T, and of T;.
This machine, started on a given tape description, will follow the compu-
tation of T, or of T according to the scanned symbols being 0 or 1. These
machines will be useful later.

6.1.3 Turing machines by quintuples

The Turing machines we have been considering either print a symbol or
move at each step. Turing originally considered machines which could both
print and move in the same step. We look at these machines as well as the
previous ones, as they are more convenient for use in the next chapter.

Definition A Turing machines by quintuples consists of a finite alphabet A,
a finite set of states Q, and a set of quintuples of form gaa’q'R or qaa’q'L,
where g and g’ are states and a and a’ are letters. A given pair g, a begins at
most one quintuple.

As before, the configuration ugav is terminal if no quintuple begins with
q,a. If there is a quintuple gaa’q’'R then ugav yields ua’q’'bv', where vis bv',
while if there is a quintuple gaa’q’L then ugav yields u'q’ba’v, where u is
u'b.

Intuitively, we can go from one of these kinds of Turing machines to the
other without difficulty. Given a Turing machine by quintuples, we need to
split the single write and move step into two steps, one writing and the next
moving. Given a Turing machine by quadruples, if we want to write, which
requires staying where we are, we can do so using steps which simulta-
neously move and write if we first write and move right and next write (the
symbol that is being scanned) and move left.

More formally, let T be a Turing machine by quadruples. Let 7" be the
Turing machines by quintuples whose states are the states of T together with
an auxiliary state g, for each state g of T. To each quadruple gaRq’ (or
qaLq') of T, the machine T' has quintuples gaaq'R (or qaaq'L). To each
quadruple gaa’'q’ of T, T' has a quintuple gaa’q’, R. Finally, for every state g
of T and for every letter x, T' has a quintuple g, xxqL. It is easy to check that

88 Turing machines [Ch. 6

if Cis a terminal configuration of T then Cis also a terminal configuration of
T'. If the configuration C of T yields C, then for T" either C yields C; or C
yields a configuration C’ such that C’ yields C; and C’ is in one of the states
qr. It follows that if the computation of T starting at C is infinite so is the
computation of 7" starting at C. Also, if the computation of T starting at C'is
finite and ends with C* then the computation of T” starting at C is also finite
and ends at C*,

Conversely, suppose T is a Turing machine by quintuples. Let the Turing
machine T" by quadruples have the states of T and two additional states g
and g, for each state q of T. To each quintuple gaa’q'R (orqaa’q’'L) of T, let
T' have a quadruple gaa'q'r (or qaa’q’;). Also T' has, for every state g and
letter x, quadruples grxRq and q; xLq. It is now easy to check thatif Cis a
terminal configuration of T then Cis also terminal for 7", while if C yields C;
for T then for T' C yields C' and C’ yields C;, where C’ is in one of the
auxiliary states. As above, it follows that the computation of T starting at C
is finite and ends at C* iff the computation of T" starting at C is finite and
ends at C*.

Finally, observe that we can allow Turing machines which have both
quadruples and quintuples. If we need to, we can convert all the quadruples
to quintuples as above; alternatively, we can convert all the quintuples to
quadruples.

It is sometimes convenient to require that, in a Turing machine by
quintuples, each state can be approached from only one direction. More
precisely, we require the set of all states to be divided into two disjoint sets
QOrand Q; such that if there is a quintuple ending in gR then ¢ is in Q, while
if there is a quintuple ending in gL then g is in Q, . If we have an arbitrary
Turing machine by quintuples we can replace each state by two states to get a
new Turing machine 7" which possesses this property. It will again be true
that the computation of T starting with C is finite and ends with C* iff the
computation of T" starting with C is finite and ends with one of the two
configurations obtained from C* by replacing its state by one of the two
corresponding states of T".

6.2 COMPUTATION BY TURING MACHINES

6.2.1 Simulation of abacus machines

In this section all our Turing machines will have alphabet {0,1}. We shall
consider machines by quadruples; as we have seen, we can go from these to
machines by quintuples and back again.

The notation 1* will denote a block of x 1s. Thus 012013 is short for
0110111. An expression 1° is omitted, so that 010001101 can be written as
01101°01°01201". The tape description corresponding to
€ = (x(1), x(2), ...) is defined to be 01*M01*@ _ .

Theorem 6.1 To each abacus machine M there is a Turing machine T on the
alphabet {0,1} and with a halting state which simulates M. That is, EM =1 iff

Sec. 6.2] Computation by Turing machines 89

T, started on the tape description corresponding to &, ends on the tape
description corresponding to 1.

Proof This will be proved by induction. The induction starts with Turing
machines Add, and Sub, which simulate a, and s,. These will be constructed
later.

Let M be M, ... M,. Suppose we have a suitable machine T; which
simulates M; fori = 1, ..., r. Then the product machine T ... T, plainly
simulates M, ... M,.

Now suppose M is simulated by T. We want to find a Turing machine
which simulates (M),. We will construct later a Turing machine Test, which,
started on a tape description correspondingto§ = (x(1),x(2),...),endson
the same tape description in one of two states, ending in the state g, if
x(k) = 0 and in the state g, if x(k) # 0, and for which a configuration is
terminal iff it is in one of the states g, and g, .

We may name the states of T so that T starts on g, has its halting state g
as the starting state of Test,, and has no other state in common with Test,.
Let T' be the Turing machine whose states and quadruples are those of T
together with those of Test,. Because no quadruple of T begins with g and
no quadruple of Test, begins with g,, we see that at most one quadruple
begins with any pair. No quadruple of T or Test, begins with g,. Also, for
every letter a, and any state ¢ other than g, g, or ¢q,, there is a quadruple
beginning q'a. Hence g, is the halting state for T". Let the starting state of 7"
be q. We shall show that T' simulates (M),.

Take any £ and the corresponding tape description. Start 7" on this tape
description. The computation of T" will first follow Test,. Hence, if x(k) =0
then T will return to the same tape description in the state g,, and will then
halt. In this case {(M), = &.Ifx(k) # Othen T" will return to the same tape
description in state ¢,. As this is the starting state of T', the computation of 7"
will now simulate the computation of M. In particular if EM is not defined the
computation of 7" will be infinite. If, however, EM = 1 the computation of
T’ will reach the configuration consisting of the tape description correspond-
ing to n in the state g. Since this is the starting state of Test, the procedure
now repeats, and so on. It is plain that if £(M), is not defined then the
corresponding computation of 7" is infinite. If §(M), is EM”, where 7 is as
small as possible, then the corresponding computation of T" passes through
the tape descriptions corresponding to EM, EM?, ..., EM’, on which it
ultimately stops (after making one test to be sure the kth coordinate is 0).
Thus T’ simulates (M),. The theorem is proved by induction, once we have
constructed the machines Add,, Sub,, and Test,.®

Before constructing these machines, we will say what is meant by the
function computed by a Turing machine 7. Letx = (x(1), ..., x(k)) be in
N*. We define In- ;. x to be the configuration in the starting state of T whose
tape description corresponds to x. We will define an output function Out,
from the set of configurations into N. Once this has been done, we can define
the function ffrom N* to N computed by T by requiring fx to be undefined if

90 Turing machines [Ch. 6

the computation of T starting with In . x is infinite, and to be y if this
computation ends in a configuration with output y. A function is Turing
computable if it is computable by some Turing machine.

There are several reasonable ways of defining Out,. We could define
Out;C to be the number of 1s on the tape in the tape description of C.
Alternatively, we could define it as the number of 1s strictly between the
scanned square and the next blank to the right; thus, if C is ugal”0v, Out,C
would be y.

We shall take a definition which will be especially useful in the next
chapter; on those configurations for which it is defined it will coincide with
the above two. We shall require Out; to be the partial function given by
Out,C = y if the tape description of C is 01”.

Theorem 6.2 Any abacus computable function is Turing computable.

Proof Let f be abacus computable. Then we know there is an abacus
machine M which, on input x, halts if fx is defined, and, if it halts has fx in the
first register and all other registers empty.

Let T be a Turing machine which simulates M. Then the computation of
T started on In . x is infinite if fx is not defined. If fx = y the computation
of T started from Inz ,x will stop in a configuration whose tape description
corresponds to (y, 0,0, ...); that is, the tape description will be 01”. Hence f
is computed by T.m -

We still have to construct three particular machines.

Test, can just be defined as R**~!RTest{ L**, L**}. For R+~ moves to
the 0 immediately before the block 1*%). This is followed by R, which moves
one square further right. The symbol now scanned is 0if x(k) = Oandis 1if
x(k) # 0. In either case we have to move to the kth 0 to the left of the
scanned square, which is the 0 originally scanned. The two copies of L**
provide two different states on which we finally halt, depending on whether
x(k) is 0 or not.

To define Add, we first need to find extra room to insert the additional 1.
So we need to find a machine Shiftleft which, started on #001*0v, ends on
u01*00v. We can then define Add, to be Shiftleft =P, L+*, For suppose we
start this machine on the tape description corresponding to &. When we have
performed the portion Shiftleft*=1 the resulting tape description will be
1*10 ... 01**<=11**)Q Then P, will replace the scanned 0 by 1, and
L+* will return to the 0 originally scanned.

Shiftleft is defined as P,R*LPyR. For, started on ©001*0v, this passes
through the tape descriptions ©011*0v, u01*10v (after all, 11* is the same as
1*1), u01*10v, 401*00v, and u01*00v. -

Similarly, the machine Shiftright, defined as P,L*RP,L, when started on
u01*00v will end on ©001*0v. We use this to define Sub,, but whether or not
it is needed depends on whether or not x(k) is 0, so we have to use Test.

We define Sub, to be R+*~'RTest{L** ,T,}, where T, is

Sec. 6.2] Computation by Turing machines 91

PoLShiftright* ~!R. Simpler machines would be possible, but we would have
to define further auxiliary machines to construct them.

We know, as with Test,, that when we apply R**'R the final tape
description has 0 scanned if x(k) = 0 and has 1 scanned if x(k) # 0. In the
first case, we simply move back to the 0 originally scanned. In the second
case, we begin by replacing the 1 scanned by 0. We then have to move the
first k—1 blocks one square to the right to get the correct form. Because of
the way Shiftright works, we first have to move one square left, so that we
are on the 0 immediately to the right of 1**~1 then apply Shiftright k—1
times. When this is done, we have overshot by one square, and we find the
tape description is 901"‘1) ...; so we have to finish by moving one square
right.

We have seen that functions computable by register programs are partial
recursive; hence they can be computed by Turing machines. We can prove
directly that register programs can be simulated by Turing machines. We
simply take one machine Add,, Suby, or Test, for each line ay, s, or J, (and
a machine with one state and no quadruples for each STOP line). We then
have to identify the final states of these machines with the starting states of
other such machines, according to the ways the program takes us from one
line to another. Details are left to the reader.

6.2.2 Variations on the above definitions

If we look carefully, we see that Add, and Sub, do not finish on the square
originally scanned. This is sometimes inconvenient. In particular, suppose
we could always finish on the square originally scanned and without ever
moving to the left of this square. Then we could work with a tape which was
only infinite in one direction, since the portion of the tape to the left of the
originally scanned square could be deleted. It is often convenient to have
this possibility.

In our process, in order to add 1 to (or subtract 1 from) x(k), we have
moved the first K — 1 blocks. We might try to move the blocks after block k
instead, so as to get the above property. But this cannot be done without
modifications in our definitions. The problem is that, for instance, a tape
description beginning 012012000 could correspond to (2,3), to (2,3,0,0,15),
or to (2,3,0,0,0,0,4). If we look at a finite part of the tape, even if we have
found a long sequence of blanks, we can never be sure that no further non-
blank symbols occur.

There are two standard ways round this. Instead of finding a Turing
machine T which simulates the abacus machine M, we can obtain, for each n,
a Turing machine which simulates M on those & for which x(i) = 0 for all
i > n. Choose any m so that register i is not used if i > m. Suppose first that
n = m. Then, on such &, as we build the Turing machine inductively, we
only need Add, and Suby to act correctly on sequences n with y(i) = 0 for
i > n. Thus we can safely move the n — & blocks following block k, and we
will have what we need; the fact that this does not perform Add, (or Suby)
for all tape descriptions does not matter, as we never come across the ones
which create problems. If n < m, we may come across sequences 1 with

92 Turing machines [Ch. 6

y(i) # 0 for some i > n. But in this case every n we meet has y(i) = 0 if
i > m, and this time we move the m — k blocks following block k.

An alternative approach, which is often used, is to change the tape
description corresponding to £. Given &, choose any n such that x(i) = 0 for
i > n. We then make the tape description 01'**()011+*@q !+
correspond to &. Hence there are infinitely many tape descriptions corres-
ponding to any &, since there are infinitely many choices of n. We can then
recognise the end of a tape description corresponding to £ by two consecu-
tive blanks. With care, we can use this to shift the blocks following block k.
There are some technical problems in the simulation which can occur if the
chosen n is less than m, where m is the largest register used by M. We shall
not pursue this matter further.

Another possibility is to use a larger alphabet. Observe that any x in N
can be uniquely written as xo+x;n+ ... x,n", where 1<x;<n for all i
(provided we take the empty sum to represent 0). We can then express x by
the string x,, ..., x;,xo on {1, ..., n}. Thus, on the alphabet {0,1, ..., n}
(or, more generally, on any alphabet with n+1 elements, by renaming the
elements) we could require the tape description corresponding to £ to be
0u(1))0u(2)0..., where u(i) is the string representing x(i). We could then
compute functions using these machines. A brief indication is given in the
next chapter that the functions computed by these machines are all partial
recursive. If we wish to show that all abacus computable functions (and
hence all partial recursive functions) can be computed by such machines,
whichever alphabet we choose, we will need to find machines which simulate
a, and s,. This is somewhat trickier than before. Firstly, if the string u
corresponds to x the expression for the strings corresponding to x+1 and
x—1 are more complicated than before. Second, we are no longer certain
that adding 1 to (or subtracting 1 from) a number increases (or decreases)
the length of the corresponding string, so we must sometimes use a shift and
sometimes not. Finally, the machines which shift right or left have to be
more complicated than before. All these problems can be overcome; no
major theory is involved, just a mass of detail. Further, we might want to
ensure that we could use a tape infinite only in one direction, in which case
we would have to deal with the previous considerations as well.

Exercise 6.1 Suppose we use the tape configuration 01*()+101*@+1 _ to
correspond to (x(1), x(2), ...). Find Turing machines Add, and Sub, which
simulate a; and s, and which end on the square they started on, and which
never move to the left of the original square. (You will need a machine which
moves to the right until it reaches two consecutive blanks. You may also find
the machine given by q0Rq,, q1Rq;, q,109,R, ¢;1Rq,, q,01q,R, q,00g;
useful.)

In the remaining exercises u and v are strings on {4, 4, . .., a,}, and wis
astringon {ay, ..., a,}. Our Turing machines will have both quadruples and
quintuples.

Sec. 6.2] Computation by Turing machines 93

Exercise 6.2 What does the Turing machine with quintuples ga;a;q;R for
all i, g,a;a;q;R for all j#0 and all i, and g;ay4,9'R do when started in the
configuration uqa,wa,a,v?

Exercise 6.3 What does the Turing machine with quintuples qa;a;4, R,
q.:4,4,9,R, q,a,a;,q,R for 0<i<n, q,a;a;q:R for i #0, and the quadruples
41004045 and q,a4a0q, do when started in ugaowa,v (i) when w is a¥ for some
k and (ii) for other w?

Exercise 6.4 What does the Turing machine with quintuples ga;a;q, L for
all i, q,a;a;, ,q,L for all i#n, q,a,a,9,L, q,a,a;,q,L for i#0, and quad-
ruple g,aya,q5 do (i) when started on ua,a,akqa,v for some k and (ii) when
started on ua,wqa,v, where w is not of form a)?

Exercise 6.5 With the help of the previous machines and other similar
machines, construct machines Add, and Sub, which simulate a, and s, when
the alphabet is {0,1,...,n}.

Exercise 6.6 Define, for a Turing machine T with alphabet {ay,...,a,},
total functions Out; and In , which enable us to say what is meant by the
function computed by T.

6.2.3 Halting problems and related results

Many problems for Turing machines can be shown to be undecidable by
clever manipulation of machines. They can also be looked at using already
proved results about partial recursive functions (or intuitively computable
functions)..

For instance, there is a Turing machine such that {n; T eventually halts
when started on 017} is undecidable. We need only choose T to compute the
partial characteristic function of a set which is r.e. but not recursive.

We can number Turing machines (at least, provided we require the states
to belong to a fixed countable set {qo, 4, ...}, Which is no real restriction).
We can then obtain a universal function as in Theorem 2.4. The Turing
machine which computes this function can be referred to as a universal
Turing machine. On the input 01"01", it finishes with the output of T,, on
input 01”. To formalise this without going into great detail about Turing
machines, it is necessary to use the results of the next chapter. It is easy to
proceed from a numbering of Turing machines to the numbering of the
corresponding modular machines, and then to use Kleene’s Normal Form
Theorem (which is proved in the next chapter) to obtain a partial recursive
function universal for Turing computable functions.

With this numbering {n; T, eventually halts when started on a blank
tape} is not decidable. For the numbering of Turing machines provides an
indexing of computable functions as in section 2.4. Our set is the same as
{n; $,(0) is defined}, and this set is undecidable, by Rice’s Theorem.
Another proof of this result will be given later.

94 Turing machines [Ch. 6

Many other properties can be shown undecidable by similar techniques.
As a contrast, we show {n; T,, when started on a blank tape eventually prints
1} is decidable. For, given any Turing machine T, we run T until it either
halts or a state occurs twice (one or the other must happen by k+1 steps if the
machine has k states). We can see if the computation has printed 1 by this
stage. If not, and the computation has not halted, the remainder of the
computation just keeps repeating a cycle of configurations, remaining
throughout on a blank tape.

One of the most interesting undecidable problems is known as the busy
beaver problem. For any Turing machine T, let f(T) = m be defined iff T
has a halting state and eventually halts on 01" when started on a blank tape.
Let b(n) be max{f(T); T has n states}. Notice that we may assume that the
states of T'are qy, . . ., q,, if T has n states; consequently there are only finitely
many machines to look at for each n. If we could decide whether or not a
machine halted when started on a blank tape, we could simply look at all
those machines with n states which did halt when started on a blank tape,
determine for each of these whether they halt on 01" for some m, and find
f(T) for each of them. Hence b would be computable if we could decide
whether or not a machine halted when started on a blank tape. We shall
show that b is not computable.

Suppose that b is computable by a Turing machine B which has k states.
Let P(n) be a Turing machine which halts on 01" when started on a blank
tape. Then f(P(n)BB) = b(b(n)). Since P(n)BB can be chosen to have
n+2k states, we see that b(n+2k) = b(b(n)).

Now b(n+1)>b(n). For let T be a machine with n states which halts on
01" when started on a blank tape. Because T has a halting state, by adding
one state and two quintuples we get a machine 7" with n+1 states, one of
which is a halting state, such that T” halts on 01”*! when started on a blank
tape. We can choose T so that m is b(n). The result follows, as b(n+1) =
f(T")=m+1. Then b(i)>b(j) if i>j. Since b(n+2k) = b(b(n)), we see that
n+2k = b(n) for all n.

Now let D be a machine which ends on 01?" when started on 01”. The
machine P(n)D has n+d states for some fixed d, and f(P(n)D)=2n. Hence
b(n+d)=2n for all n.

From the previous two paragraphs we find that n+d+2k = b(n+d) = 2n
for all n, which gives the absurdity d+2k=n for all n. Hence b is not
computable.

7

Modular machines

The concept of Turing machines comes from a profound intuition into the
nature of computation (and was developed before electronic computers
existed). Unlimited register machines also are a natural notion if one’s
intuition is deep enough. By contrast an understanding of unlimited register
machines was needed before abacus machines were created, although, once
developed, abacus machines are fairly natural. The modular machines
which are discussed in this chapter, however, are not at all intuitive. They
come from looking at a numerical coding of Turing machines, and observing
how the Turing machine computation affects the coding. They require an
understanding of Turing machines before they could be invented. As such
they might be described as ‘second generation’ machines. Like physical
computing machines, this second generation nature makes them easier and
faster than first generation machines such as Turing machines. We will find
that the fact that Turing computable functions are computable by modular
machines is almost immediate, while the proof that functions computable by
modular machines are partial recursive, and even Kleene’s Normal Form
Theorem, is also straightforward.

7.1 TURING MACHINES

We consider a Turing machine defined by quintuples. Renaming the states
and the tape symbols if necessary, we may assume that the tape symbols are
the natural numbers 0 (blank), 1, ...,n, and that the states are also natural
numbers, at most one of which is also a tape symbol. Let m be a number
greater than n and also greater than any state.

We can represent any configuration C=...b,bygacyc, ... by the four
numbers g, a, u = Lb;m’, v = La;m'. These numbers are usefully combined

96 Modular machines [Ch. 7

into two in one of the following two ways. The pair (um + g, vin + a) is called
the right-associate of C, while (um + a, v + q) is the left-associate of C. Not
all members of N2 are associates of configurations, but we can tell whether or
not a pair is an associate (right or left) of some configuration, and, if so, can
find the configuration. This would not hold if we allowed two numbers to be
both tape symbols and states; if one number is both a tape symbol and a state
then some pairs will be both right and left associates of the same configu-
ration (for most of the applications we can assume the tape symbols and
states have no number in common, but nothing is simplified by assuming
this).

Suppose C yields C' using the quintuple gaa’q’R so that C’ is
...bybga’q’cycy Then the four numbers corresponding to C’ are q’, ¢,
uw=a+bym+bm?+ ...,v' =c,+c;m+ Hence the right-associate
of C'is (um?+a'm+ q',v); we do not look at the left-associate of C’ in this
case. Similarly if C had yielded C' using the quintuple gaa’q’'L the left-
associate of C’' would have been (u,ym?+ a’m + q') and we would not have
looked at the right associate of C’. This behaviour motivates the strange
definition of modular machines in the next section.

7.2 MODULAR MACHINES

A modular machine consists of positive integers m,n with m>n together
with a (possibly empty) set of quadruples (a,b,c,R) or (a,b,c,L) where a,b,c
are numbers with0 < a<m,0 < b<m, and 0 < c<m?, and R and L are
direction symbols; we require that at most one quadruple begins with a given
pair a,b. When n =1 we call the modular machine special.

The set of configurations of the modular machine M is just N*. For any
(«,B)eN? we define u,v,a,b by « =um + a, p=vm+ b where 0 < a<m and
0 < b <m. We call («,) terminal if no quadruple begins with a,b. If there is
a quadruple (a,b,c,R) we say that («,B) yields (um?® + c,v) while if there is a
quadruple (a,b,c,L) we say («,B) yields (u,vm? + c). The integer n will not
be used yet.

The reason these machines are called modular machines is that the
behaviour of M on («,B) depends on the remainders of o and p modulo m.

Now let T'be a Turing machine of the kind considered in section 7.1. The
modular machine M corresponds to T if its defining integers are those m and
n which are used for T and if, in addition, to each quintuple qaa’'q’'D of T
(where D is either R or L) the modular machine M has two quadruples
(g,a,a’'m+ q',D) and (a,q,a’'m+ q’,D). Since m can be any large enough
integer, there are infinitely many modular machines corresponding to a
given T. The definition of modular machines and the discussion in section
7.1 make the following lemma obvious.

Lemma 7.1 Let T be a Turing machine and M a corresponding modular
machine. Let C be a configuration of T, and («,B) an associate (left or right)
of C. If C is terminal for T, then (o,) is terminal for M. If C yields C' then
(o, B) yields an associate of C'.

Sec. 7.2] Modular machines 97

Let M be any modular machine. Let («,,B;), («,,B,), ... be either an
infinite sequence such that (o;,pB;) yields (o;,,,B;4) for all i or a finite
sequence whose last pair is terminal and such that («;,3;) yields (o;, ;,B;+1)
if the latter is defined. This sequence (which is obviously unique once (o, ;)
is given) is called the computation of M starting with («,,,). The following
lemma is obvious, iterating lemma 7.1.

Lemma 7.2 Let M be a modular machine corresponding to the Turing
machine T, and let («,B) be an associate of the configuration C. If the
computation of T starting from C is infinite then so is the computation of M
starting from (o, B). If the computation of T starting from C terminates with C'
then the computation of M starting with («,B) terminates with an associate of
C'.

We define a function g,,:N>— N? by g,,(«,B) = («',B’) if the compu-
tation of M starting with («,B) is finite and has («’,B’) as last pair. This
function is rather strange. If it is defined anywhere then there is a pair
a,b beginning no quadruple, and then g,, is the identity on any
pair (um+a,vm+b). We shall use the integers m and n (but not the
quadruples) to define the input function In,,: N— N? and the output function
Out,,:N>— N. We then call the composite Out,,g,,In,, the function com-
puted by M. More generally we could define a function In,, ,:N"— N2, and
call all the functions Out,g,In,,, functions computed by M. If these
functions are given a suitable definition the following lemma will be obvious.

Lemma 7.3 Let M be a modular machine corresponding to the Turing
machine T.

(i) Forany xeN’In,, X is an associate of the configuration of T correspond-
ing to x as input, the starting state being n + 1.

(@) If («,B) is an associate of the configuration C of T, then the output (if any)
of Cis Outp(,B).

Combining Lemmas 7.2 and 7.3 we obtain the following theorem.

Theorem 7.4 Let M be a modular machine corresponding to the Turing
machine T. Then, for any r, M and T compute the same function from N" to N.

Theorem 7.4 depends on defining the input and output functions so as to
make Lemma 7.3 correct. The formulas are not deep, but they are somewhat
messy. The general case will be left to the reader, and only the formulas for
special modular machines and one-variable input will be given; the theory of
this case extends without difficulty to the general case.

Let M be a special modular machine. Since n=1, the starting state is the
number 2. Define In,x to be (2,Z!'<'<*m’) = (2,(m*** —m)/(m — 1)) and
Outp(o,p) to be (uy<P)(m?’*'>P). If M corresponds to the Turing
machine T'then Iny,x is the right associate of 01* in state 2, while if (o, B) is an
associate of 01” in any state then Outy,(c,B) is y. Hence Lemma 7.3, and
consequently also Theorem 7.4, holds in this case. If we had defined the

98 Modular machines [Ch.7

output for all configurations in Chapter 6 (for instarce, as in Exercise 6.6) a
more complicated definition of Out,, would be needed for Lemma 7.3(ii) to
hold.

Exercise 7.1 Define In,,, for the special modular machine M and any r so
that Lemma 7.3(i) holds.

Exercise 7.2 Define Iny, and Iny, for any modular machine so that
Lemma 7.3(i) holds.

Exercise 7.3 Define Outy, for any modular machine M so that Lem-
ma 7.3(ii) holds.

Exercise 7.4 If you have given a definition of output for all configurations
of Turing machines T (either with tape symbols 0,1 or more generally)
define Out,, for (special) modular machines so that Lemma 7.3(ii) holds.

7.3 PARTIAL RECURSIVE FUNCTIONS AND MODULAR
MACHINES

Let M be a special modular machine with quadruples (a;,b;,c;,R) for
1 < i < rand quadruples (a;,b;,c;, L) forr <i < r + k (where r and k may be
0). Define Next,,:N>— N? by Next,,(«,B) = («',B’) if (,B) yields («',B’)
and Next,,(«,B) = (a,B) if («,pB) is terminal. Let Comp,,:N>— N? be the
iterate of Next,,. Let Term,, be the set of terminal pairs.

Lemma 7.5 The set Term,, and the functions In,,, Out,,, Next,,, and
Comp,, are primitive recursive.

Proof The formulas already given for In,, and Out,, show they are
primitive recursive.

The numbers u,v,a,b defined by « =um+a, p=vm+b with a,b <m
are primitive recursive functions of («,). Now (o, B) is terminal iff no pair
(a;,b;) equals (a,b). Hence the set Term,, is given by the primitive recursive
condition (a#a,Vb#b)A ... ANa+#a,.,Vb#b,,,). The function
Comp,,, being the iterate of Next,,, will be primitive recursive if Next,, is.
Also Next,, is given by the following definition by cases, and so is primitive
recursive.

If a=a, and b = b, then Next,,(«,B) = (um?+ cy,v)

If a = a, and b = b, then Next,,(«,B) = (um? +c,,v)
Ifa=a,,,and b=>b,,, then Next, («,B) = (u,ym?+c,,)
Ifa=a,.,and b=b,, , then Next,, («,B) = (u,ym? +c,).
Otherwise Next,,(«,B) = (o, p).®

Sec. 7.4] Kleene’s normal form theorem 99

Theorem 7.6 The function computed by a special modular machine is
partial recursive.

Proof Let f be computed by M. Let ¢,y:N>>N be the functions
Out,,Comp,,(Iny,x,?) and y,,Comp,, (Ins,x,), where y,, is the characteris-
tic function of Term,,. By Lemma 7.5 both ¢ and y are primitive recursive.
By definition the function f computed by M is given by fx = ¢ (x,?) for any ¢
such that y(x,f) =0 (bearing in mind that Next,,(«,B) = («,B) if («,p) is
terminal). In particular f is partial recursive, since

fx = ¢o(x,ut(y(x,2) = 0)).m

Combining Theorems 5.10, 6.2, 7.4, and 7.6 we have the following
theorem.

Theorem 7.7 The following conditions on a function f:N — N are
equivalent.

(i) fis partial recursive.

(i) fis abacus computable.
(iii) fis computable by a Turing machine with tape symbols 0 and 1.
(iv) fis computable by a special modular machine.

More generally, as indicated in the exercises, these conditions are also
equivalent to f being computable by an arbitrary Turing machine or by an
arbitrary modular machine, and similar results hold for functions from N” to
N for any r.

The following result has already been stated as Theorem 4.2.

Theorem 7.8 Let f:N—N be partial recursive. Then there are primitive
recursive u:N—N and v:N>-N such that fx=u(uwy {v(x,y)=0}).

Proof Take the function ¢ and y used in the proof of Theorem 7.7. Define
u to be pJ~ ! and v(x,y) to be yJ 'y +|x—Ky|. If fx is defined there will be
some ¢ with fx=¢ (x,f) and y(x,£)=0. Let y be J(x,£) and we will have fx=uy
and v(x,y)=0 since yJ~'y=y(x,f)=0 and Ky=x.

Conversely, suppose there is some y with v(x,y)=0. Then Ky=x and
yJ~ly=0. Define ¢ to be Ly. Then we have y (x,#)=0 and so fx is defined and
fx=d(x,H)=uy.

Consequently fx is defined iff there is some y with v(x,y)=0, and then
fx=uy for any such y, and, in particular, for the least such y.®

7.4 KLEENE’S NORMAL FORM THEOREM

We now assign a number to each special modular machine M, called its
Godel number, and look at the material of the previous section using the
Godel number of the machine as a parameter.

Let M be a special modular machine with quadruples (a;,b;,c;,D;) for

100 Modular machines [Ch.7

i < k, where each D; s either R or L. The Gddel number of M (which will
depend on the order in which the quadruples are given) is

. b, c: d:
2"T1pgi1 Paiv2 Péiv3 Dii+as

where d;=1if D,=Randd,=2if D,=L.

For any geN, whether or not it is the Godel number of a machine, we
make the following definitions. We define m to be expg, k to be quo-
(4,lengthg) = 1, and a;=€xXpy; 418, b; = €XP4; 428, C; = €XP4i1 38, and d; =
€XPa4;+48- Then m and k are primitive recursive functions of g, while a;, b;, c;,
and d, are primitive recursive functions of g and i.

Now take any g, «, and B. If we let u=quo(m,«), v=quo(m,p),
a=rem(m,«) and b=rem(m,B), then u, v, a, and b will be primitive
recursive functions of g, «, and B. If j = (ui < k) (a=a;Ab=0b,), then j is
also a primitive recursive function of g, «, and . Alsoj = k + 1 iff there is no
i < ksuchthata=g,and b=0b,

We define a primitive recursive set TERM, and primitive recursive
functions IN, OUT, NEXT, and COMP. The function IN:N?— N is given
by IN(g, x) = (g, 2, (m*** —m)/(m — 1)) and OUT:N?*->N is
(my < B) (m**1>P).

The set TERM is {(g,«,B); j=k + 1}. The function NEXT:N3>— N3 is
given by the following definition by cases:

if d; =1 then NEXT(g,«,B) = (g,um?®+c;,v),
if d; =2 then NEXT(g,«,p) = (g,u,ym*+c),
otherwise NEXT(g,«,B) = (g,,B).

The function COMP is the iterate of NEXT.

Now let g be the G6del number of the machine M. By the definition of j
and of TERM, (g, «,B)e TERM iff (o, B) eTerm,,. Also Iny,x is the last two
entries of IN(g,x) and OUT(g, o, B) = Out,,(«, B). Further, bearing in mind
thatd;=1if D;= R and d;=2if D;= L while d;=0if j =k + 1, we see that
NEXT(g,«,B) = (g,a',B") iff Nextp(a,B)=(a',p’). It follows that
COMP(g,,B,1) = (g,&', B") iff Comp, (e, B,1) = (o, B").

Now define ® to be OUTCOMP(IN(g,x),?) and ¥ to be XCOMP-
(IN(g,x),t), where X is the characteristic function of TERM. Let g be the
Godel number of M. Let ¢,y be as defined in Theorem 7.6. Then
D(g,x,0)=¢(x,t) and ¥(g,x,t)=y(x,?). Thus the function f computed by M
has fx defined iff there is some ¢ with ¥(g,x,#)=0 and then fx=®(g,x,¢) for
any such ¢. This property could be used instead of Kleene’s Normal Form
Theorem for most applications. The following theorem is equivalent to
Kleene’s Normal Form Theorem, as partial recursive functions are exactly
those computed by special modular machines.

Theorem 7.9 There are primitive recursive functions U:N—N and
V:N°-N with the following property. If f is the function computed by the

Sec. 7.4] Kleene’s normal form theorem 101

special modular machine M, and g is the Godel number of M, then
fr=U(ut{(V(g,x,0)=0)}.

Proof As in Theorem 7.8, we define U to be ®J; ! and V(g,x,y) to be
WJs 'y +|Ky—g| +|KLy —x|. Since J5'y = (Ky,KLy,LLy) we see that if
V(g,x,y) =0 then we have Ky =g, KLy =x, and ¥(g,x,r) =0, where ¢ is
defined to be LLy. It then follows that fx = ®(g,x,t) = Uy. Conversely, if fx
is defined there must be some ¢ with ¥(g,x,f) =0 and then ®(g,x,?) = fx.
Hence, defining y to be J3(g,x,t) we have fx = Uy and V(g,x,y) =0.

So we have shown that fx is defined iff there is y with V(g,x,y)=0 and that
fx="Uy for any such y, and, in particular, for the least such y, as required.m

The following result provides a formal proof of Lemma 2.6, since the
parameter g in Kleene’s Normal Form Theorem can be taken as the Godel
number of a special modular machine computing the function.

Proposition7.10 Let F:N>-N be partial recursive. Then there is a primitive
recursive g:N—N such that, for all x, gx is the Godel number of a special
modular machine computing the function f,, where f, is given by f,y=F(x,y).

Proof Let T be a Turing machine computing F. Let T have states 3(start-
ing state), ..., r. Let P(x) be a Turing machine that starting with the tape
description Ou ends with 01*0u for any u. We may assume P(x) starts with
state 2, ends with state 3 and has r+1, ..., r+x as its remaining states. Then
f is computed by the Turing machine P(x)T, and we define gx to be the
Godel number of the modular machine corresponding to P(x)T. It is easy to
check that g is primitive recursive.®

The halting set H(M) of a modular machine M is defined to be the set of
those (o, B) for which the computation of M starting with («, B) is finite. If
(0,0) is terminal we let Hy(M) denote the set of those («,) for which the
computation starting with («,) terminates with (0,0).

Theorem 7.11 (i) For any M, H(M) is r.e. (ii) There is a special modular
machine M such that H(M,) is not recursive. (iii) My can be chosen so that
Hy(M,) is not recursive.

Proof. (i) Let y be the characteristic function of the terminal set of M.
Then («,B)eH(M) iff there is some ¢ with xyComp(w,B,f)=0. Since the
function yComp(«,,?) is (primitive) recursive, H(M) is r.e. by Exercise
4.3.

which used Kleene’s Normal Form Theorem). Let T, be a Turing machine
computing the partial characteristic function of K, and let M, be a special
modular machine corresponding to Ty,. Then xe K iff Inxe H(M,), where In
is the input function of M,. Further we can assume that T has a halting sta*
and that this state is the number 0. With this extra assumption xe K

102 Modular machines [Ch.7

Inxe Hy(M,). Since In is (primitive) recursive and K is not recursive, both
H(M,) and Hy(M,) are not recursive.®

Exercise 7.5 Show that the set of Godel numbers of special modular
machines is a primitive recursive set.

Exercise 7.6 Define the G6del number of an arbitrary modular machine
and prove that Theorem 7.9 (with new functions U,V) holds for functions
defined by any modular machine.

Exercise 7.7 Suppose T is a Turing machine whose set of states can be
divided into two as in the last paragraph of section 6.1. Show that we can
define a modular machine M for which Lemmas 7.2 and 7.3 hold but such
that M has only one quadruple corresponding to each quintuple of T.

Exercise 7.8 Obtain a formula for the function g of Theorem 7.10 and show
that g is primitive recursive. (This is most easily done using the previous
exercise.)

3

Church’s Thesis and Godel numberings

In the first section of this chapter we review the evidence that the intuitively
computable functions are exactly the partial recursive functions. In the
second section we see how to define recursive and r.e. subsets of an arbitrary
countable set.

8.1 CHURCH’S THESIS
8.1.1 Church’s Thesis
Church’s Thesis states that

the intuitively computable functions are exactly the partial recur-
sive functions.

This is called a thesis, rather than a conjecture, because it is essentially
unprovable. That is, anyone who wanted to prove it would have to begin by
specifying precisely what was meant by an intuitively computable function.
It would then be open to other people to deny that this precise specification
defined what they considered to be intuitively computable. Nevertheless,
there is a great deal of evidence for Church’s Thesis.

We have already seen that partial recursive functions are all intuitively
computable. Now, many suggested notions of computable functions have
turned out to define the partial recursive functions, even though they are
very different in appearance. Other suggested notions of computability have
led to subsets of the set of partial recursive functions; in such cases, it is
usually easy to accept that certain processes that intuitively lead from
computable functions to computable functions do not preserve this class (for
instance, minimisation on the set of primitive recursive functions), so that
this class must be a proper subset of the set of all computable functions.
Also, no definition of computable functions has been suggested which does
not make a computable function partial recursive. One might wonder if this
was due to our lack of ingenuity in constructing functions. However, it seems
that there is a common pattern to most proofs that a suggested definition
gives only partial recursive functions. This pattern, which we shall discuss in

104 Church’s thesis and Goédel numberings [Ch. 8

the following subsections, is sufficiently general that it seems likely that any
new suggestions for a definition of computability will fit into the same
pattern.

Church’s Thesis is more than a philosophical statement about the nature
of computability. It is a useful tool in proofs. We shall often find, in the
following chapters, that it is easy to give an informal description of a function
from which it appears that the function is computable. Again, we may give
an informal description of how to decide whether or not an element is in a
given set. To show that the function is partial recursive, or that the set is
recursive, might involve some long and messy calculations. Such calcula-
tions, which are not likely to give any insight as to what is happening, are
usually replaced by an appeal to Church’s Thesis. That is, since we have
given an intuitive argument that the function is computable (or that the set is
decidable), we then claim that Church’s Thesis tells us that the function is
partial recursive. This saves tedious calculations; readers should convince
themselves, however, that any time Church’s Thesis is used, a formal proof
can be made by anyone who is sufficiently industrious. We shall give, in
Chapter 12, one detailed example of how an appeal to Church’s Thesis can
be replaced by a detailed formal argument.

8.1.2 Register programs

We have seen that partial recursive functions, abacus computable functions,
Turing computable functions, and functions computed by a modular
machine are all the same. We know that very many specific functions are
partial recursive (indeed many are primitive recursive). This does suggest
that the intuitively computable functions may be partial recursive. On the
other hand, abacus machines are so simple that the reader may wish to argue
that abacus computable functions could not include all partial recursive
functions. In this sub-section, we shall show that functions computed by
register programs are partial recursive, and we shall show that certain,
apparently more complicated, extensions of register programs also compute
only partial recursive functions.

Let R be a register program. We suppose its lines are numbered
0,1,...,r. Suppose that, for all n, register n contains the number x(#), and
that we are about to perform line i of the program. To this situation
corresponds the number g = 2‘TIp3™, which we call the code, or Godel
number, of the given configuration. Evidently, g is a code iff expyg < r.
Also, g is acode of aterminal configuration iff exp,g is one of a given number
of values (corresponding to the STOP lines). If we wish to use R to compute
functions from N* to N we define In(x(1), . .., x(k)) to be 2°TIpZ, which is
the code of x(n) in register n for all » on line 0. The output must be the
contents of register m for some m. Hence we define Outg to be exp,,.g, which
is the output corresponding to a configuration with code g.

We must now see how the next step function behaves when we consider
the codes. We have a function Next:N—N such that Nextg = gif g is not a
code or if g is the code of a terminal configuration. If g is the code of the non-
terminal configuration C then Nextg is the code of the next configuration C’

Sec. 8.1] Church’s thesis 105

yielded by C. This will depend on the instructions on line i, where i = expog.
If we look at the definitions, we find that Next is primitive recursive, given by
a definition by cases. (Namely, we first need to know the value of expqg; if
this is j, we need to look at the instruction on line j. If this instruction is a,,, we
need only multiply the code by p,,, but if it is 5,,, we need also to consider two
cases depending on whether or not exp,,g is 0. If the instruction is of form J,,,
we again have two cases depending on whether or not exp,g is 0.)

Thus Comp, which is defined to be the iterate of Next, is also primitive
recursive. The function computed by R is OutComp(Inx,t) for any ¢ for
which Comp(Inx,t) is terminal. As in the previous chapter, this shows the
function computed by R is partial recursive.

Now consider a more complicated type of register program. We might
permit lines whose instructions are

replace x,, by f(Xm(1ys - - - » Xm(q)) for some function f, or
Test whether or not property P holds for (x,(1), - - - , Xm(q)); if 50, g0
to line j, and if not go to line j'.

Here the function f must be taken from some set of initially given functions,
and the property P from some set of initially given properties. Since the
function f can be computed, and the property P can be tested, in one step of
the computation, they must be fairly simple (for instance, we might allow fto
be addition, multiplication, or exponentiation, and we might allow P to be
the property ‘divides’ or ‘between’). Bearing in mind that the set of primitive
recursive functions is quite complex, it seems reasonable to assume that all
these functions and properties are primitive recursive.

Making this assumption, the function Next will be given by a definition
by cases which will be more complex than before. But, because each fand P
is primitive recursive, Next will still be primitive recursive. The function
computed by the program will be given by the same expression as before,
and so it will still be partial recursive.

We can go further and add lines such as

check the contents of register #; if this is m, perform a,,, or
check the contents of register #; if this is m, go to line m.

The function Next will still be given by a definition by cases, of a yet more
complicated form (if the first of these, for instance, occurs on line i, the
corresponding case is ‘if expog = i and exp,g = m then multiply by p,,.)).
However, Next is still primitive recursive, and so the function computed by
this program is still partial recursive.

8.1.3 Other models of computation
Both modular machines and register programs fit into the following model of
computation. Turing machines also fit into this model, as do the generalisa-
tions of Turing machines which allow several tapes and several heads on
each tape.

We are given aset I' of configurations. Each Cin I" has a code, which is in

106 Church’s thesis and Godel numberings [Ch. 8

N (or possibly in N for some m). The set of codes is recursive. Certain
configurations are called terminal. These are reasonably easy to recognise,
and so the set Term of codes of terminal configurations is (primitive)
recursive. If Cis not terminal, it yields a next configuration C'. This function
is reasonably simple, and so the function Next is partial recursive, where
Next is defined by Nextg = g’ iff g is the code of C and C yields C' whose
code is g’ (alternatively, we may extend Next in some convenient way on
terminal codes and non-codes so as to make Next total and recursive, or
even primitive recursive).

To compute functions from N* to N using this computing system we need
an input function from N* to I" and an output function from a subset of I" to
N. These should be fairly simple, so we would expect In: N*—N, given by Inx
is the code of the input, to be recursive, and Out:N—N, given by Outg is the
output of C if g is the code of C, to be partial recursive. (Frequently, the
output is defined on all configurations; if so, we may wish to define Out in
some convenient way for non-codes, so that the resulting total function is
recursive, or even primitive recursive.)

The assumption that the relevant functions are all partial recursive is
very reasonable. It just amounts to requiring that each individual step in the
computation is fairly simple. Hence many suggested models of computation
fit into this pattern, and it seems likely that any model proceeding by single
steps will fit this pattern.

With the above assumptions, the function computed by this system is
OutComp(Inx,s), where s = ut(Comp(Inx,?) is in Term). Here Comp is
the iterate of Next, so Comp is partial recursive. As before, this makes the
function computed by the system a partial recursive function.

Our original abacus machines do not fit into this approach, since they do
not work by single steps. But we saw directly that they compute partial
recursive functions only. Again, one can reasonably hope that any such
model will have a fairly simple way of generating new computer programs
from old ones. If so, as in the case of abacus machines, it seems likely that the
function computed by such a system is obtained from functions computed by
simpler systems using at most composition, iteration, and minimisation. The
starting computers are likely to be simple enough that they compute only
(primitive) recursive functions. Thus, inductively, the function computed by
such a system is likely to be partial recursive.

We cannot claim any general argument that all partial recursive func-
tions are computed by any of the systems we have just looked at. In each
individual case it is necessary to see whether or not all partial recursive
functions can be computed. Usually this is done by showing that an approach
that is known to compute all partial recursive functions can be mimicked in
the system that we want to look at.

8.1.4 Non-determinism

When we considered Turing machines and modular machines, we insisted
that no pair began more than one quadruple. If we remove this condition we
would not have a unique next configuration to a given one. However, we

Sec. 8.2] Godel numberings 107

could still refer to a computation as being a sequence of configurations in
which each could be reached in one step from the previous one.

For Turing and modular machines, this non-determinism is inessential
(although it becomes very important in the theory of complexity of compu-
tation); that is, deterministic machines are as natural to look at as non-
deterministic ones. Some other models of computation are essentially non-
deterministic, in the sense that any attempt to make them deterministic is
unnatural. We shall show that non-deterministic models of computation still
compute only partial recursive functions.

The coding, and Term and In are just as before. Next now has to be
replaced by a subset NEXT of N2 such that (g,g') is in NEXT iff g and g’ are
the codes of configurations C and C’ such that C' is one of the possibilities for
the next configuration of C. As before, if the possibilities are reasonably
simple, NEXT is recursive.

It is not convenient to use such a model directly to compute a function.
For then we would probably need to look at all computation starting with Inx
and check that those which terminated all gave the same output. This would
raise problems, as we would have to look at an unknown number of
computations.

Instead, we use the system to accept inputs. We take a subset of the
terminal configurations, which we call the accepting subset. This should be
simple enough that its set of codes is recursive. We can then say that a subset
S of N¥ is accepted by the system if xeS iff there is at least one computation
starting from Inx which terminates with an accepting configuration. We can
then say that a function is computed by the system if its graph is accepted. To
show that computable functions are partial recursive, it is enough to show
that accepted sets are r.e.

We cannot conveniently iterate NEXT, so we use a different technique.
We have a coding of the configurations. This leads to a coding of strings of
configurations. Namely, if g(i) is the code of C;fori = 1,...,n, the string
C,,...,C,is coded by 2"T1p§®. Not all integers code strings, but the set of
codes of strings is recursive (either by Church’s Thesis, or by a direct proof in
the next section). Then G is the code of a string which is a computation which
terminates in an accepting configuration iff G codes a string and, with n
being exp,G, exp,G is the code of an accepting string, and for all i<n
(exp;G, exp;.,G) is in NEXT. Hence the set A of these codes is recursive.
Finally, the set accepted by this system is {xeN*;3 G with exp,G = Inx and
GinA}. This setisr.e., since it is obtained by existential quantification of a
recursive set.

8.2 GODEL NUMBERINGS

Let X be a countable set. We wish to say what is meant by recursive and r.e.
subsets of X. This is done by taking a bijection ¢: X— N, and defining the
subset A to be recursive (or r.e.) if ¢pA is recursive or r.e. In particular, it is
clear that A is recursive iff both A and X — A are r.e., because the similar
property holds for N.

108 Church’s thesis and Godel numberings [Ch. 8

Plainly which sets are recursive or r.e. depends on the choice of ¢. If y is
another bijection they define the same recursive and r.e. subsets iff
y¢~1:N— Nis recursive (in which case its inverse ¢ y ~ ! is also recursive). If
we have two countable set X and Y, and corresponding bijections ¢, and
dy, we say f: X— Y is partial recursive if ¢ yf ¢3! is partial recursive. In the
cases we look at, there will be several natural possibilities for the bijections
(or, rather, for related injections); these will all give the same notions of
recursive and r.e. sets and partial recursive functions.

Definition A Gédel numbering of the countable set X is a one-one map
from X into N such that ¢p.X is recursive.

Let ¢ be a Godel numbering of X. Then we know, by Proposition 4.7,
that there is a strictly increasing recursive function f from N onto ¢.X. Then
f~'¢ will be a bijection from X onto N. We use this bijection to define
recursive and r.e. subsets of X. This would not be particularly useful if we
always had to refer to the function f. However, we shall see that we need
only look at ¢.

Proposition 8.1 Let ¢ be a Godel numbering of X. Then the subset A of X is
r.e. iff bA is r.e., and is recursive iff GA is recursive.

Proof By definition A isr.e. iff f~!pA is r.e., where fis as above. Since fis
recursive, f'pA will be r.e. if pA isr.e., and f(f 'dA) will be r.e. if f1pA
isr.e. Since f maps onto $.X, A = f(f 'dA). Hence Aisr.e. iff pAisr.e.

Now A is recursive iff A and X—A are r.e. By the above this holds iff $A
and ¢X—0¢A are r.e. Similarly A is recursive iff both ¢4 and N—dA are
r.e. At this point we use the fact that ¢.X is recursive, and so both ¢X and
N-¢Xarer.e.

As dX-PA=0XN(N—-dA), and pXisr.e., we see that pX—dAisr.e. if
N—-¢A is r.e. Conversely, as N—-pA=(N—-¢dX)U(déX—dA), and N-¢pX is
r.e., we see that N—dpA isr.e. if pX—¢pAisr.e.®

Readers might well think that a further condition would be useful in the
definition of Godel numberings. Namely, it seems reasonable at first sight to
require that ¢ is intuitively computable. But this is an illusion. The only way
we could make this precise is if we knew what was meant by a recursive
function from X to N. But the whole purpose of ¢ is to talk about
recursiveness for X, so we would not need ¢ if we already knew about this.

We now give some examples of Godel numberings.

Let n be any positive integer. Then any positive integer a can be written
uniquely as Zo;n’, where 1< o; < n for all i. This is a G6del numbering of the

set of all strings on {1,...,n}. Let S be any set of cardinality n. Then any
bijection from S to {1,...,n} gives a bijection from the strings on S to the
stringson {1, ..., n}, and hence gives a Godel numbering of the stringson S.

A different bijection will give a different Godel numbering, but will give the
same recursive and r.e. subsets. The easiest way of showing that the relevant

Sec. 8.2] Godel numberings 109

map is recursive is to use Church’s Thesis; a direct proof is indicated in the
exercises.

We have frequently looked at a G6del numbering of the set of strings on
N, namely the map sending (x(1),...,x(n)) to 2"I1p7?. An alternative
Godel numbering is to send the string to £2¥®, where y(i) isx(1) + ... +
x(i) +i— 1. Again, these Godel numberings can be shown to give the same
recursive and r.e. subsets, either by using Church’s Thesis or by an explicit
proof.

Given any bijection from a countable set S to N, we get a bijection from
the strings on S to the strings on N, and hence a Godel numbering of the
strings on S. This will depend on the bijection used. Two bijections ¢ and y
will give the same recursive subsets iff y ~!:N— N is recursive. Another
Godel numbering of the strings on S is obtained by writing the members of §
as ay, a,, ... (using a bijection from S to N), and then mapping the set of
strings on S into the set of strings on the two-element set {a,’} by sending a,
toa,a,toa’,a,toa", and so on. This gives the same recursive andr.e. sets as
before.

Proposition 8.2 Let X be a countable recursive subset of a countable set Y.
Then a subset A of X is recursive (or r.e.) as a subset of X iff it is recursive (or
r.e.) as a subset of Y.

Proof Since we are talking about recursive subsets of Y, we are implicitly
referring to a bijection ¢ from Y to N. As X is a recursive subset of Y, by
definition ¢.X is a recursive subset of N. Hence ¢ can be regarded as a Godel
numbering of X. Now, by definition, A is recursive (or r.e.) as a subset of Y
iff A is recursive (or r.e.). The result follows from the previous
proposition.®

The above result will be useful later. It enables us to use such phrases as
‘A isrecursive’ without worrying too much about which set A is regarded as a
subset of.

Proposition 8.3 Let A be a recursive subset of X. Then the strings on A are a
recursive subset of the strings on X.

Proof We have a bijection from X to N. Let B be the image of A under this
bijection. Then it is enough to show that the strings on B form a recursive
subset of the strings on N.

Take the standard Godel numbering of the strings on N, using the prime
decomposition. Then g is a Godel number of a string on B iff it is a Godel
number of some string and Vi< expog(i=0Vexp;ge B), which is clearly a
recursive property.®

If we want a Godel numbering of the finite subsets of N there are three
obvious candidates, which give the same recursive and r.e. subsets of this
set. One is to regard a finite set {x(1), ..., x(n)} as having its elements given

110 Church’s thesis and Gédel numberings [Ch. 8

in increasing order, and then identifying the subset with the corresponding
string. Another is to take the Godel number of the subset as the smallest
Gaodel number of any string obtained by taking the elements of the set in
some order. The third is to let the Gédel number of this subset be £2*®.
With any of these, we can extend this to a Godel numbering of the finite
subsets of a countable set S. We can also prove that if A is a recursive subset
of S then the finite subsets of A form a recursive subset of the set of finite
subsets of S.

Exercise8.1 Foranyx, writex+1asop+xn+ ... +o,n", where nis a fixed
positive integer and 1 < o; < n. Show that 7 is a primitive recursive function
of x, and that «; is a primitive recursive function of x and i. Use this to show
that any two bijections from aset A to {1, ..., n} give the same recursive and
r.e. subsets of the strings on A.

Exercise 8.2 Let A be a r.e. subset of the countable set X. Show that the
strings on A are a r.e. subset of the strings on X.

9

Hilbert’s Tenth Problem

Hilbert, in an address to the International Congress of Mathematicians in
1900, gave a list of problems he considered important. The interest aroused
by this list led to several developments in mathematics, and many of the
problems have now been solved. The one that concerns us is the tenth on his
list, in which he asked if it was possible to decide for an arbitrary polynomial
with integer coefficients whether or not it had an integer solution. We shall
see that there is no such decision procedure.

The material in this chapter provides an alternative proof of Kleene’s
Normal Form Theorem, with a stronger conclusion. In this approach we do
not need to look at Turing machines and modular machines, though these
are of interest in their own right. We will also be able to give two different
proofs of the Undecidability and Incompleteness Theorems, one using
modular machines and the other using diophantine sets.

9.1 DIOPHANTINE SETS AND FUNCTIONS

Definition An exponential polynomial in the variables x(1),...,x(n) is a
polynomial (in the ordinary sense; polynomials are required to have integer
coefficients, but these may be negative) in the variables x(1),...,x(n),
y(1), ..., y(m), where each y(i) is either of the form x(k)*? for some k and j
(depending on i) or of the form 7*¥) for some j where r is a natural number
(and j and r depend on i). If each y(i) is ¢’ for some r the exponential
polynomial is called a unary exponential polynomial, while if each y(i) is 2*¢)
for some j it is called a base-2 exponential polynomial.

Definition The subset A of N¥is called diophantine if there is a polynomial
P such that xe A iff Jy(P(x,y) = 0). Also A is called exponential diophan-
tine, unary exponential diophantine, or base-2 exponential diophantine if

112 Hilbert’s tenth problem [Ch.9

there is P which is, respectively, an exponential polynomial or a unary
exponential polynomial or a base-2 exponential polynomial such that xe A
iff y(P(x,y) = 0).

A property is called diophantine if the set it defines is diophantine, while
a function is diophantine if its graph is diophantine. Similar conventions
apply to the other concepts.

Before we can give many examples, we need to show some simple
properties. Plainly the condition P=0 V Q=0 can be written as PQ=0,
while the condition P=0 A Q=0 can be written as P>+ Q?=0. If Pand Q are
polynomials, exponential polynomials, unary exponential polynomials, or
base-2 exponential polynomials so are PQ and P+ Q2. In future only the
polynomial case will be mentioned explicitly; the other cases will be equally
obvious.

The conditions Jy(P(x,y)=0) V Jy(Q(x,y)=0) can be written as
dy(P=0 V 0=0), while Jy(P(x,y)=0) V 3z(R(x,z)=0) can be written as
dy,z(P=0 V R=0); consequently the union of diophantine sets is diophan-
tine. The condition 3y(P(x,y)=0) A 3y(Q(x,y)=0) is the same as
Jy(P(x,y)=0) A 3z(Q(x,z)=0) and so can be written as 3y,
z(P?(x,y)+ Q%(x,z)=0); hence the intersection of diophantine sets is dio-
phantine. Further, the condition 3y(P(x,y)=0 A yeB), where B is a dio-
phantine set, can be written as y(P=0 A 3z(Q(y,z)=0)), which is the
same as Jy,z(P(x,y)=0 A O(y,z)=0).

Let A be a diophantine subset of N, B a diophantine subset of N, and fa
diophantine function from N* to N". Then fA and f~'B are diophantine,
since they are, respectively, {z;3y(yeA A z=fy)} and
{x;3Ju(ueB A u=fx)}.

One might expect that there are more complicated sets, satisfying
conditions in which there are expressions of form P2, where P and Q are
polynomials, or even more complicated systems of exponents upon expo-
nents. However, a condition of form ... P2... is the same as the condition
Juv(...u"... ANu=P A v=0), where u and v are two new variables.
Proceeding like this, any such complicated condition can be reduced to an
exponential diophantine condition.

Examples The set of positive integers is diophantine, being
{x;y(x=y+1)}.

The predicates < and < are diophantine, since x <y iff 3z(y=x+2),
while x<y iff z(y=x+2z+1).

The predicate a=b mod c is diophantine, since it can be written as
Ax((a—b)*=cx?).

The function rem is diophantine, since rem(m,n)=r iff
dg(n=mq+r) N\ r<m. Similarly quo is diophantine.

The functions J and J,, are diophantine. More generally, it is easy to
check that if P is any polynomial with rational coefficients such that the
values of P are always natural numbers (when the variables are natural
numbers) then P is diophantine.

Sec. 9.1] Diophantine sets and functions 113

Theorem 9.1 (Main Theorem on diophantine sets) Let A be a subset of N*.
Then the following are equivalent:

1) Aisr.e.,

(2) the partial characteristic function of A is partial recursive,
(3) A is exponential diophantine,

(4) A is base-2 exponential diophantine,

(5) A is diophantine.-

Start of proof Observe first that it is enough to prove the theorem when
k=1. For A will satisfy any of (1) to (5) iff /A satisfies the same property,
since J is diophantine.

Plainly, (3), and so also (4) and (5), implies (1). That (1) implies (2) was
shown in Proposition 4.4. The same result also showed that (2) implied (1).
However, this latter fact used Theorem 4.2. The material in this chapter will
provide an alternative approach to Theorem 4.2 and Kleene’s Normal Form
Theorem. It is therefore important to notice that we actually prove that (2)
implies (4). We shall soon see that this result is enough to prove Theorem
4.2.

The proof that (2) implies (4) will occupy the next two sections. In
section 9.4 we shall prove that the exponential function is diophantine,
which will complete the proof of the Main Theorem. For the moment, we
will abandon the proof of the Main Theorem, and we will establish some
important consequences of it.

Theorem 9.2 Letf:N—N be partial recursive. Then the partial characteristic
function of the graph of f is partial recursive.

Proof The function g given by g(m,n)=ur(r+|n—fm|=0) is partial recur-
sive. If fm is not defined, then g(m,n) is not defined. If fm is defined then
g(m,n) is defined iff n=fm, since otherwise there is no suitable . Hence g is
the required partial characteristic function.®

We can now prove a stronger form of Theorem 4.2.

Theorem 9.3 Let f:N—N be partial recursive. Then there is a primitive
recursive function v:N*—N such that fm=K(ur(v(x,r)=0)).

Proof By the previous lemma and the Main Theorem, the graph of f is
diophantine. (In fact it is enough to know this graph is exponential
diophantine; hence this theorem can be proved without using section 9.4.)
Thus there is a polynomial P in k+2 variables for some k such that n=fm iff
there is x with P(m,n,x)=0. As P does not map into N, we do not want to
refer to P itself as primitive recursive. However, there are polynomials P,
and P, with non-negative coefficients such that P=P;—P,, and then
|P|=|P,—P,| is plainly primitive recursive.

Let v(m,r) be |P(m,J},r)|. Then v is primitive recursive. Since the first

114 Hilbert’s tenth problem [Ch.9

component of J -}, is K, we see that if v(m,r) = 0 then Kr = fm. Conversely,
if fm = n, take a suitable x and define r to be J, . ,(n,x), and we will have
v(m,r) = 0. Thus fm = Kr for any r such that v(m,r) =0, and, in particular,
this holds for the least such r, as required.®

Theorem 9.4 The set of polynomials P with integer coefficients for which
P =0 has a solution in natural numbers is undecidable.

Proof Let K be a set which is r.e. but not recursive. By the Main Theorem
K is diophantine, so there is a polynomial P such that ke X iff there are
X1, ..+, %, With P(k,xq,...,x,)=0. If we could decide for all polynomials
whether or not they had a solution in natural numbers, then, in particular,
we could decide for any k whether or not P(k,x,, ..., x,) = 0had a solution,
and so we could decide whether or not k was in K. Since K is not recursive,
this is impossible.®

Notice that, although this result is nearly a negative solution to Hilbert’s
Tenth Problem, it is not quite what is needed. For Hilbert’s Problem asks
about integer solutions, and we have only answered about non-negative
solutions.

However, we can easily derive the result we want. It is a theorem of
Lagrange (a proof is given in the last section of this chapter) that every
natural number is the sum of four squares. Take any polynomial P. Obtain
from it a polynomial Q by replacing each variable x; by u? + v} + y? + 27,
where u;, v;, y;, and z;are new variables. Then P = 0 has a solution in natural
numbers iff O =0 has an integer solution. Since we cannot decide whether
or not an arbitrary polynomial has a solution in natural numbers, we cannot
decide whether or not an arbitrary polynomial has an integer solution. This
provides the negative answer to Hilbert’s Tenth Problem.

We can now provide a striking characterisation of r.e. sets.

Theorem 9.5 Let A be any r.e. subset of N. Then there is a polynomial P
such that A is the set of non-negative values of P.

Proof There is a polynomial Q such that ne A iff there is x with Q(n,x) = 0.
Let P(n,x) be (n+ 1) (1 — Q?) — 1. If Q(n,x) #0, plainly 1 — Q? < 0, and so
P(n,x) is negative. Thus the non-negative values of P come from those (7,x)
with Q(n,x) = 0. By the definition of Q, given n there is such an x iff ne A,
and for such an n and x we have P(n,x) = n, giving the result.®m

It is an interesting problem to find suitable polynomials when A is given.
For instance, we could ask for a polynomial whose non-negative values were
exactly the prime numbers. Explicit formulae for such polynomials are
known.

Sec. 9.2] Coding computations 115

9.2 CODING COMPUTATIONS

Let A be a subset of N whose partial characteristic function is partial
recursive. Then this function is abacus computable. Since the value of the
function is zero on its domain, by Lemma 5.4 the abacus machine can be
chosen so that the output (if any) of the computation has all registers empty.
By Proposition 5.13, this abacus machine can be replaced by a register
program performing the same computation. Further, the register program
can be chosen so that its only STOP instruction is on the last line, any line
j:Ji(b,c) has b and c different from j, and so that an instruction s, is never
applied to an empty register. Let the instructions be numbered 1,...,r.
Since only finitely many registers are used, we may assume the registers used
are numbered 1, ..., m.

Consider the computation starting with » in the first register, and all
other registers empty. Let x, be the contents of register i at time . Let p;, be 1
if the computation is on line j at time ¢ and 0 otherwise.

Suppose neA. Then the computation halts at some time s, and the
numbers x;, and p; are defined for ¢<s. They satisfy the following
conditions.

Zp, = 1 forall t. (€))

]

This equation is plainly equivalent to saying that for all ¢ there is exactly one j
with p;, =1, the rest being 0.

P = L)
Prs = 1, and p,, = 0 for t#s. 3)
X0 = n, and x,o = 0 for i#1. 4)

The condition relating x; and x; ,, ; can be written as
Xieer = Xut2'p;—Z'pj,)
where X' denotes the sum over those j for which the instruction on line j is a;,
and X" is the sum over those j for which the instruction on line jis s;. This uses
the assumption that an instruction s; is performed only if register i is not
empty.

The remaining conditions are, for any j for which the instruction on line j
is either a; or s; for some i,

Pj+1,0+1 = 1 provided p;, = 1, (6)
while if line j is J;(b,c), we have the condition

ifp” =1 thel] pb,l+l =1 if X; = O and pc’,+1 =1 if X; * O- (7)

116 Hilbert’s tenth problem [Ch.9

Conversely, suppose conditions (1) to (7) hold. Then, by induction on ¢,
itis easy to see that, for ¢ < s, the contents of register i at time ¢is x;,, and that
p; = 1 iff the computation is on line j at time ¢. In particular, the
computation starts with » in register 1, the remaining registers being empty,
and reaches line r (and so halts) at time s. Hence nisin A.

At first sight, conditions (1) to (7) might appear to be exactly what we
need. However, the number of variables x; and p;, depends on s, which is
itself a variable. We need a fixed number of variables. This is achieved by
regarding the x;, and p, as the digits in the Q-ary expansion of numbers X;
and P;, where Q is a large power of 2.

Thus we put
q =n+r+s+1, and Q = 29. (8)
We also define I by
1+(Q-1I = 0" ©)
It follows that

I=1+Q+ ... +0"

We define X; to be Zx;,Q* and P; to be Xp;Q’. Conversely, given
numbers X; and P;, we define x;, and p;, by these formulas. Notice, though,
that if X; and P; are given, there is no guarantee that x; and p;, are zero for
t>s. This will, however, follow from the conditions we use.

We will need an auxiliary relation <. Let the numbers a and b be written
in binary notation as a = X0,2° and b = B,2". Then we write a <b iff o, < PB;
for alli. Notice that, for anyc,a <2°—1iffa < 2°— 1, because all the binary
digits of 2° — 1 are 1. Because Q is a power of 2, it is easy to change from the
Q-ary representation of a number to its binary representation, and vice
versa.

The property that each p;, is 0 or 1 is equivalent to

P, < (10)
We can then express (1) as
IP =1 (11)
This uses the fact that, in forming X P;, there is no carry from one power
of O to a higher power, since in forming the sum we add at most r terms equal
to 1 in each power of Q, and r < Q.

Condition (2) can be written as

1< P, (12)

Sec. 9.2] Coding computations 117

while (3) can be written as
P, = 25, (13)
Condition (6) is evidently equivalent to
QP; < P;;. (14)

Conditions (5) and (7) are harder to express than the others. Suppose
first that the x; come from a computation. Then, for all ¢, x; ,,; < x;, + 1.
Hence x;, < n+s, and so, by the definition of O,

X, < (02 -1 (15)

Conversely, if (15) holds, we have x;, =0 for t>s, and x;, < Q/2 -1 for
t < s. This fact will be useful later.
Now consider the equations

X, = OX,+n+X'QP,~3'QP, (16)
= QX,+X'QP,—Z'QP; for i#1, 17)

where L' and X" have the previously defined meanings (which depend on i).
The right-hand side of (17) can be written as 2Q***(x;, + Z'p; — Z'p;,), and
similarly for (16). Consequently, if (4) and (5) hold, (16) and (17) will also
hold. The converse is not so obvious, since we want the above expression to
be the Q-ary expansion of X;, and we have to worry about whether or not
there is any carry, either from a higher power of Q or to a higher power.

Since X'p;,is 0 or 1, and x; < (Q/2— 1), there can be no carry to a higher
power. There will be no carry from a higher power provided that £"p;,, which
canonly be Oor 1, is 1 only if x;,# 0. This certainly holds if x; and p;,, defined
from X; and P;, are actually the data of a computation.

We show, by induction on ¢, that the conditions (8) to (20), where (18) to
(20) are defined shortly, ensure that this property holds. Suppose the
property holds for all ¢ < u. Then (16) and (17) will give for all i; that
Xie+1=%;+Z'p;— Z'py, forallt < u. In particular, x; , , ; is the contents of
register i at time u + 1, as needed.

Finally we need to consider condition (7). If b = c this is replaced by

QP; < P, (18)
Otherwise it is replaced by

Q1‘<1b+}c’ (19)

J

QP, < P,+ QI -2X,. (20)
J

118 Hilbert’s tenth problem [Ch.9

Now (19) amounts to saying that if p;,=1, then either p, .., or p. ., is 1
(bearing in mind that at most one of them is 1, by (11)).

We now have to consider (20). We know that (1) to (7), in the presence of
(8) and (9), imply (10) to (19). Thus we have to show that (20) is equivalent
to (7), given (8) to (19). Suppose we have u such that, fort < vandalliand},
x; and p; come from a computation. Consider a line j:J;(b,c), with b and ¢
different from j, and look at the relevant formulas (7) and (20). If p;, =0,
(20) imposes no condition on the coefficient of 0“** on the right-hand side,
and (7) also imposes no condition. Hence we assume p;,=1. As c#j, we
have p,,, = 0. We also know, from (16) and (17), that x; ,, ; = X;,.

The right-hand side of (20) is ZQ*(p., + QO — 2x;,). We know, from (15),
that x; < Q/2, so that all the coefficients are non-negative. It is then easy to
check that, because p., =0, the only terms which can contribute to the
coefficient of Q“*1 in the Q-ary expansion of the right-hand side of (20) are
the terms Q“(Q — 2x;,) and Q“*'(p. ,+1+Q —2x; ,,1). Hence if x;, =0,
this coefficientis 1 + p. , . ;. Now the relation < is a condition on the binary
expansions, not on the Q-ary expansion. As p;, = 1, the coefficient of Q** 1
in the binary expansion of the right-hand side of (20) must be 1. This is
equivalent to p, ,, ., =0, which, by (19), amounts to p,, ,,,.; =1.

If x,,#0, then the coefficient of Q“*! in the Q-ary expansion is
Pews1tQ—2x; 41, and hence the coefficient of Q“** in the binary
expansion is p. , ;. Hence (20) amounts to saying that p. , .., = 1if x;, #0.
So we have shown that (20) and (7) are equivalent, as needed.

We have now shown that neA iff the conditions (8) to (20) hold. These
are conditions on a fixed number of variables. However they involve the
relation <. In the next section we express this relation by a base-2
exponential diophantine condition, so showing that A is base-2 exponential
diophantine.

9.3 REMOVAL OF THE RELATION <

b
Lemma 9.6 a<biffrem(2, (Z)) =1, where (a) is the binomial coefficient.
Proof We write P= Q, where P and Q are polynomials, to mean that every

coefficient of P — Q is divisible by 2. By an easy induction, starting from
(1+x)2=1+x2+2x, we see that, for all i,

(1+x)? = 1+x?, and hence (1+x)? = IT(1+x%)",

where b =X §,2°. It is easy to see that the term x? occurs in the product on the
right iff a < b. If it occurs its coefficient is plainly 1. Since the coefficient of x*

on the left side is the binomial coefficient (Z), the result follows.®

Sec. 9.4] Exponentiation 119
b+1 b
Lemma 9.7 Letu=2%*! Then (a) = rem(u,quo(u®, (u +1)?)).

Proof We know that (u+1)>=% (?)u". The result follows if we can show

_ b . .
that <4 (i)u' <u“. It is plainly enough to show that £‘ <% ([;) < u. But this
is immediate, since the sum is just (1 + 1)°.m

We have now shown that the relation < is exponential diophantine, and
hence we have shown that, in the Main Theorem, (2) implies (3). We shall
now show that the function x” is base-2 exponential diophantine, thus
showing that (2) implies (4).

Lemma 9.8 The function x” is base-2 exponential diophantine

Proof 1If y>1, we see that x» <2¥ —x. Also 2* = xmod (2¥ —x). It
follows, raising this congruence to the yth power, that x” = z iff

(y=0Az=1) V (y=1Az=x) V u,v(y > 1Au+x=22A
v=xy?Arem(u,2") =z),

which gives the result.®m

In the next section we show that x” is diophantine (it turns out that it is no
easier to show just that 2” is diophantine). We use methods of elementary
number theory. The techniques used are not at any great depth; however
they are rather intricate (in the expository paper by Davis which I follow for
most of the next section he calls this material ‘Twenty-four easy lemmas’).
Readers who are primarily interested in the use of the Main Theorem to
prove results about recursive functions could omit this section, and use only
the fact that r.e. sets are base-2 exponential diophantine, which we have now
proved.

9.4 EXPONENTIATION

In this section we show that the function m” is diophantine, thus completing
the proof of the main theorem. We have to begin by considering the
behaviour of the solutions to some difference equations.

Let a be an integer greater than 1. Define x,, and y,, by

Xpp1 = 20X, — X1, Xo = 1, x; = a,
Yne1 = Za}’n—yn—li Yo = 0’ Y = L.

When the parameter a needs consideration we refer to these as x,,(a) and
Yn(@)-

120 Hilbert’s tenth problem [Ch.9

Letd = a® — 1; then \/d isirrational. It follows that if m + n\/d = u + v\/d
then m = u and n= v, and so we also have m — n\/d=u—v\/d.

(I) It is easy to see, by induction, that x,+y,\/d=(ax1/d)". Since
(a+Vd)(a—Vd)=1, we also have that x, —y,\/d=(a+\d)~". Hence
x2—dy2=1.

(II) Conversely, we show that any solution of x> — dy?>=1withxandy inN
must satisfy x = x,, and y =y, for some n. Observe first that there must be
some n with (a+Vd)*<x+yVd<(a+Vd)"*'. Let u+v\d be
(x+yVd)(a—Vd)", so both u and v are integers. We also have
u—wvd=(x—-yVd)(a+Vd)", and so u? — dv>=x>—dy*=1.

Since (a —Vd)"=(a+\/d)~", we have 1 < u+v\/d<a+1\/d. Taking
the inverse of these inequalities and changing sign, we find that —1 <
—u+vVd< —a+\/d. Adding these to the original inequalities then gives
0<2v\/d<2Vd. Hence v=0, and so u=1, since u?>—dv?=1. It follows
that x + y\/d = (a + V/d)", so x =x, and y = y,,, as required.

(II1) It follows easily from the equalities. x,+y,\/d=(ax\d)"=
(a+Vd)*" that X1+ YmssVd= X+ ymVd)(x, £ y,V/d), and hence
that we have the addition formulas x,,.,=x,X,*dy,.y, and
Ymtn=XnYm s XmYn- In partiCUIar Xmt1= X s dym’ Yms1=Ym i Xm- It
follows that y,, . 1 >y,., and hence that y,, = m for all m.

(IV) We denote the greatest common divisor of two integers r and s by
(7,s). Since x2 — dy2 =1, we see that (x,,y,) = 1. By induction on k, using
the addition formulas, we see that y,,|y, for all n and k, where r|s means that
r divides s.

(V) We can now deduce that y,|y, iff n|t. The previous remark gives the
result if n|¢t. Assume that y,|y, and that n does not divide ¢. Write ¢ as nq + r,
where 0<r<n. Since y,=Xx,yn,+ Xn.),, and we already know that y,
divides y,,,, we see that y,|x,,y,. AS (Vug:Xng) = 1, and y,|y;,,, it follows that
Y.y, But we know that y, <y, a contradiction.

(VI) We next show that y,,=kxk=1y, mod y2. To see this, we write
Xni + YucVd as (x, + y,,\Vd)*. Expanding this by the binomial theorem, and
equating the terms involving \/d gives the result.

(VII) It follows immediately that if k=y, then y2|y,.. As a partial
converse to this we show that y,|t if y2|y,. We already know that nt, since
Ynly:- Write ¢ as nk. Then we know that y2 must divide kx%~1y,, so that y,
divides kxk=1. Since (y,,x,) =1, this tells us that y, divides k.

(VIII) From the difference equation, easy inductions (the initial cases
when n is 0 or 1 being obvious) give the following results. y, =n mod 2, and
y,=nmod (a — 1). Alsoif a= b mod ¢ we find that, mod c, x,,(a) = x,,(b) and

Yn(@) = yn(b).

Sec. 9.4] Exponentiation 121

(IX) We now show that x,,. ;= —x; mod x,,, and hence x,,, +;=x; mod x,,.
For the addition formula tells us that x,,+; =X, X, +; + dy,y,+; =
Ay £ x,y) = dyix;=(x3—1)x; = —x;.

(X) The most difficult of our results, is the following. Let x; = x; mod x,,
withi<j<2nandn>0. Theni=j, unlessa=2,n=1,i=0,and j=2.

We first suppose that x,, is odd, and let g = (x,, — 1)/2. Then no two of the
nubers —gq,...,q are congruent mod x,,, and every integer is congruent to
one of them. Now we know that 1=x,<x;< ..., <x,_;, and that
X,_1 < x,/a < x,/2. In particular x,,_; < q. Also we know that the number
Xp41, -+ - X2, are congruent mod x,, to —x,,_,, ..., —X, by the previous
result. Hence the numbers x,, ..., x,, are mutually incongruent mod x,,.

When x,, is even, we let g be x,/2. In this case —q =g mod x,,. The result
will follow as before unless x,,_; = g; this possibility would give x,, ., = —q.
However this case requires x,, = 2x,_,, and, as we know that x, =ax,, _, +
dy,_,, we must havea=2 and y,,_, =0, so that n =1, as needed.

The previous result can be extended to show that if x; = x; mod x,,, with
0<i<nandO0 < j<d4n, then either j=iorj=4n—i. For if j < 2n, we get
i =j unless we are in the exceptional case. Since i is not 0, we would then
have i=2, j=0, and n =1, contradicting i < n, so this case cannot happen.
Ifj>2ndefine kas4n — j. Thenk >0, and x;, =x;=x,mod x,,. As0 <k <2n,
we cannot be in the exceptional case, and so must have k =i.

It follows at once that if 0 <i < n and x;=x;mod x,, then j= *imod 4n.
For we need only write j as 4nq + k, where 0 < k <4n and use the previous
result and the fact that x,,,, ,=x, for all r.

We are now in a position to prove the main results.

Proposition 9.9 The function y,(a) is diophantine.

Proof We show that, provided k is non-zero (the general case can be
obtained from this, but is not needed) y = y,(a) iff a>1 (else y,(a) is not
defined) and there are positive integers x, u, v, s, ¢, b, r, p, q, ¢, and d
satisfying the following eight equations.

x2=(a2-1)y* =1 (1)
uw—(@-1p? =1 @)
s2=b2-1) =1 3)
v =ry? “4)
b=1+4py = a+qu &)
s =Xx+cu (6)
t = k+4(d—-1)y ™

y = k. (8)

122 Hilbert’s tenth problem [Ch.9

First suppose the equations have a solution. As the variables are not
zero, there will, by (II), be positive i, j, and n such that x = x;(a), y = yi(a),
u=x,(a), v=y,(a), s=x;b), and t=y,(b). By (4), y<v, and so i < n.
From (5), b =a mod x,(a), from which we know, by (VII), that x;(b) = x;(a)
mod x,(a). From (6) we have x(b)=x(a) mod x,(a). Hence we have
x{(a) = x,(a) mod x,(a), so (X) tells us that j= *imod 4n.

Equation (4) tells us that y(a)?y,(a), from which we know that y,(a)|n.
Hence j= *imod 4y,(a).

We know that y(b) =j mod (b —1). By (5), b=1 mod 4y,a), so that
y;(b)=j mod 4y/a). By (7), we have y;(b) =k mod 4y,(a). Consequently
k= *imod 4y/a).

However, we know that i < y,(a), and condition (8) tells us that
k<y/a). The congruence then requires that i = k. As i is defined to satisfy
y =ya), we have, as required, y = y,(a).

Conversely, suppose that y = y,(a). Set x to be x,(a), so that (1) holds.
Let m =2ky,(a), and define u =x,,(a), v=y,,(a). Then (2) holds. We find
that y?|v, since we have that y?|y,.,(a), and the latter divides y,,(a). Hence
we can find r satisfying (4). Since m is even, we know from (VIII) that v is
even, and hence u is odd.

Asuisodd and (u,v) =1, and y divides v, we find that (u,4y) = 1. By the
Chinese Remainder Theorem (Theorem 9.11 below) there is a non-negative
by satisfying by =1 mod 4y and b, = a mod u. Adding a suitable multiple of
4uy to by, we can find positive b, p, and q satisfying (5). Then (3) is satisfied
by putting s and ¢ to be x,(b) and y,(b).

Since b >a, we have s>x, as s =x,(b) and x =x,(a). It also follows,
since b =a mod u, that s =x mod u. Hence we can choose c to satisfy (6).

Since tis y,(b), we know that t = kand =k mod (b — 1). By (5) we have
that 1=k mod 4y, so that (7) can be satisfied. Finally (8) holds, since

Y= yi(a).m
Theorem 9.10 The function a” is diophantine.

Proof It is most convenient to assume that n>0and a > 1. We do not need
the general case; it can be obtained by a simple modification.

We define Near(u,v) to be the nearest integer to v/u. The function Near
is diophantine, since Near(u,v) = w iff (2rem(u,v) < u A w=quo(u,v)) V
(2rem(u,v) >u A w=quo(u,v) + 1).

We shall show that a” = Near(y,,,1(k),y,+1(ka)) provided k is large
enough. By the previous proposition, a” will be diophantine if the require-
ment that k is large enough can be expressed as a diophantine condition.

It is easy to check, by induction, that, for any b >1 and any n, (2b — 1)"
< y,4+1(b) < (2b)". Apply this for b=ka and for b=k, and divide the
inequalities. We find that y,, . ,(ka)/y, . (k) lies between (2ka — 1)"/(2k)" =
a"(1 = 1/2ka)" and (2ka)"(2k — 1)" = a™(1—1/2k)~". Hence
Near(y, 4 1(k),y,+1(ka)) = a™if (1 —1/2ka)” > 1—1/2a" and
(1-12k)~" < 1+ 1/2a".

Sec. 9.5] Godel’s sequencing function 123

Since y,, . 1(a) = (2a—1)" > a",itis enough to require that (1 — 1/2ka)"
> 1-1/2y,,,,(a) and (1—-1/2k)~" < 1+ 1/2y,.,(a), and the latter con-
dition can be written as (1 —1/2k)” > (1+1/2y,,,(a)) 1.

Now (1 —x)"> 1 — nx for any real x between 0 and 1 (because (1 — x)” +
nx has a positive derivative). Hence the required conditions hold provided
that 1 —n/2ka > 1—1/2y,,,,(a) and 1 —n/2k > (1+1/2y,,,(a)) . These
two conditions, when cleared of fractions, are diophantine conditions, since
Yn+1(a) is diophantine.®

9.5 GODEL’S SEQUENCING FUNCTION AND MIN-COMPUTABLE
FUNCTIONS

9.5.1 Godel’s sequencing function

The Godel sequencing function y:N®—N is defined by y(i,t,u)=
rem(1 + (i + 1)¢,u). We shall see that this enables us to replace any property
of a variable number of variables by a property with a fixed number of
variables. (This could also be done using the known coding of strings.
However, v is a much simpler function than the latter; in particular, it uses
only addition and multiplication, not exponentiation.) The key example of
this is in Lemma 9.13 and its applications in Theorems 9.15 and 9.16 and
Lemma 13.13. We need a classical result from number theory before
obtaining this property of 7.

Theorem 9.11 (Chinese Remainder Theorem) Let ny, ..., n, be integers
greater than 1, and suppose that, for i #j, the greatest common divisor of n;
and n;is 1. Let a; be an integer less than n,, fori=1, ..., k. Then there is an
integer a such that rem(n;,a) =a; fori=1, ..., k.

Proof Map {x;x < n;...m} to {x;x < n} X ... X {x;x < ng} by
sending x to (xy, ..., x;), where x; is rem(#n;,x). We want to show that this
function is onto. Since both sets have n, ... n, elements, it is enough to show
the function is one-one. So suppose rem(n;,x) = rem(n;,y) for all i < k.
Then x —y is divisible by all n,. Hence x —y is divisible by the product
n, ... ng, by the assumption about greatest common divisors. Since both x
and y are less than n, ... n,, we must have x=y.m

Proposition 9.12 Let ay, ..., a; be in N. Then there exist t and u in N such
that y(i,t,u) = a; forall i < k.

Proof Take any s greater than all of k,a,,...,5;. Let ¢t be s!. Let n; be
1+ (i+ 1)¢, for all i < k. By the previous theorem it is enough to show that
the greatest common divisor of n; and n; is 1 when i #}.

Soletd divide n;and ;. Then d divides (j + 1)n;— (i + 1)n; = j—i.So dis
at most k, and hence d divides ¢. Since d divides both tand 1 + (i + 1)z, d must
be 1, as needed.m

Lemma 9.13 Let F:N?>— N be the iterate of f:N— N. Then F(m,n) =r iff

124 Hilbert’s tenth problem [Ch.9

there are t and u such that y(0,t,u) =m, y(n,t,u) =r, and, for all i<n,
v+ 1,6u) = fy(i,t,u).

Proof Plainly, F(m,n) =r iff there are a; for all i < n such that a,=m,
a,=r, and a;,,=fa; for all i<n. The result follows by applying the
proposition to this sequence.®

An interesting use of the sequencing function occurs in the next result.

Proposition 9.14 Let A be a re. subset of N**!, and let X ={(a,n),
Vx<n((a, x)eA)}. Then X isr.e.

Proof As in Exercise 4.3 there is a recursive subset B of N**2 such that
(a, x)eA iff Iy((a, x, y)eB). Hence (a,n)eX iff for all i <n there is some y;
with (a, i, y;)€B. This holds iff there are ¢t and u such that (a, i, y(i, ¢, u))eB
for all i < n. This condition on a, n,t, and u is recursive, being obtained by
bounded quantification from a recursive set. Since we are applying existential
quantifiers to this to obtain X, we see that X is r.c.®

9.5.2 min-computable functions

Definition The set of min-computable functions is the smallest set closed
under composition and minimisation and containing addition, multiplica-
tion, all projections, and the function ¢:N?— N given by c(m,n)=1ifm=n
and c(m,n) =0 otherwise. The set of regular min-computable functions is
the smallest set containing these functions and closed under composition
and regular minimisation.

As usual (look at Lemma 3.1 and its proof) a function is in one of these sets
iff there is a sequence of functions satisfying relevant conditions.

We begin by showing that various simple functions are regular min-
computable. First, the functions from N to N which are constantly 0 and 1
are both regular min-computable. For 0=c(x,uy(c(x,y)=0)), and
1= uy(c(0,y) = 0). By addition, it follows that any constant function from N
to N is regular min-computable, and, by composition with a projection, so is
any constant function from any N* to N.

The cosign and sign functions are regular min-computable. For
cox =c(x,0) and sgx = co(cox).

We define a property to be regular min-computable if its characteristic
function is. It then follows that if P and Q are regular min-computable so are
—P, PVQ, and PAQ. This true because X _ p=coxp, Xpvo=XrXo> and
PAQ is = (—PV =Q). Also f~!P is regular min-computable if P and the
components of f are regular min-computable.

The function |x—y| is regular min-computable, being
mz(x+z=yVy+z=x). The predicate x<y is regular min-computable, since
x <yiff x+|x—y|=y. It follows that if f and g are regular min-computable so
is the predicate f=g, since its characteristic function is sg|f—g|, and similarly
so is the predicate f<g.

Sec. 9.6] Diophantine predicates & Kleene’s normal form theorem 125

Bounded minimisation and quantification preserves regular min-compu-
tability. For let P be a regular min-computable predicate of k+1 variables.
Then (uz<y)P is uz(z=y+1VP), while (3z<y)P iff uz(z=y+1VP)<y.
Finally, (Vz<y)Pis ~(3z<y)-P.

The functions J, K, and L are regular min-computable. For J(m,n) =
m+uy(y+y=(m+n)(m+n+1)), and Kr=(um<r)(3n<r)(J(m,n)=r),
and similarly for L.

The functions rem and vy are regular min-computable. Plainly y is regular
min-computable if rem is. Now rem(m,n)=ur(n=mq+r), where
g=px(m(x+1)=n+1).

We can now prove the main theorem on min-computable functions,
using the diophantine properties. We also give a proof not using this
concept, but involving the sequencing function.

Theorem 9.15 A function is min-computable iff it is partial recursive, and is
regular min-computable iff it is recursive.

Proof Plainly min-computable functions are partial recursive, and regular
min-computable functions are recursive.

Suppose f: N — N is partial recursive. We know there are polynomials P
and Q with non-negative coefficients such that
fn=K(uy(P(n,J;'y) = Q(n,Jy)). Since J,"! is obtained from K and L
by compositions, and P and Q are obviously regular min-computable, the
result follows.

In case the reader has not covered the material on diophantine functions,
we give another proof. By Theorem 4.2, it is enough to show that every
primitive recursive function is regular min-computable. The initial functions
are all regular min-computable. Since J, K, and L are regular min-compu-
table, it is enough to show that if f:N— N is regular min-computable so is its
iterate F.

Let B(x,y) be y(x,J~'y), so B is regular min-computable. By Lemma
9.13, we can write F(m,n) as p(n,x) where
x = uy(B(0,y) = mA(Vi<n)(B(+1,y) = fB(i,y))). The result follows.m

9.6 UNIVERSAL DIOPHANTINE PREDICATES AND KLEENE’S
NORMAL FORM THEOREM

Theorem 9.16 For any k, the r.e. subsets of N* can be numbered as
Dy, Dy, ... in such a way that {(x,y);xeD,} is diophantine.

Remark Readers who have omitted section 9.4 will have to be content with
a numbering such that {(x,y);xeD,} is base-2 exponential diophantine.
This is still enough to get all the results we need about Kleene’s Normal
Form Theorem.

Proof By the Main Theorem, it is enough to give a numbering such that
{(x,y);xeD,} is r.e. Also, using the bijection J,, it is enough to prove the
result when ks 1.

126 Hilbert’s tenth problem [Ch.9

We begin by numbering the polynomials with positive coefficients. Let
Po=1, P31 =X, P31 =Pg;+ Pp;, Py 3= Py P, Plainly any polyno-
mial with positive coefficients is P, for some n. We shall regard P, as a
polynomial in x,, ..., x,; these variables need not all occur in P,, but
plainly no other variables can occur. We now define D,, to be the set
{x0; 3% ...3x,(Px,= Pr,)}. By the Main Theorem everyr.e. subset of N is
D,, for some n. (Note that 0 is not of the form P,; however a condition P =0
can be replaced by P+1=1.)

If we are content with the base-2 exponential diophantine case, we
number the base-2 exponential polynomials with positive coefficients as
Po=1, P4yy1=Xi, Py 2=2%, Py y3=Pg;+ Py, P4y 3= Pg;* Pr;, and then
proceed in an almost identical manner.

Now xeD,, iff there are aq, ..., as, such that a,=1, a, =x, ag, =a,,,
and, for all i < nwe have a;; ., = ay; + a;;, 3,13 = ag;* a;,;. (In fact we only
need to have a; defined for all j < n, but there is no harm in requiring their
existence for other j, and this makes the formulas easier.)

Using Gddel’s sequencing function, this holds iff there are ¢ and u such
that y(0,t,u) =1, y(1,t,u) = x, y(Kn,t,u) = y(Ln,t,u), and, for all i < n, we
have y(3i + 2,t,u) = y(Ki,t,u) + y(Li,t,u), y(3i + 3,t,u) = y(Ki,t,u)-y(Li,t,u).
Now v, K, and L are primitive recursive, and we are using bounded
minimisation. Hence we have xe D,, iff there are ¢ and u such that (x,n,t,u) is
in a known primitive recursive set. Thus {(x,n);xeD,} is r.e., and hence
diophantine, being the projection of a primitive recursive set.®

It is now easy to obtain a strengthening of Kleene’s Normal Form
Theorem.

Theorem 9.17 There is a primitive recursive function V:N3>— N such that
for any partial recursive f:N— N there is k with fx = K(uy(V(k,x,y) = 0)).

Proof By the previous theorem there is a numbering of the r.e. subsets of
N? as Dy, D,, ... and a (base-2 exponential) polynomial P such that
(x,y)eD, iff there are z,,...,z, with P(k,x,y,z,,...,2,) =0. Define V by
V(k,x,w) = |P(k,x,J;};w)|. Then V is primitive recursive, and (x,y)e D, iff
there is w such that V(k,x,w)=0 and y = Kw (recall that K is the first
component of J,-},). For if there is such a w we simply let z,, . .. be the last n
components of J,; !, w, while if we are given z,, ... we need only define w to
be Jn + 1()’,1) y

Now let fbe partial recursive. Then {(x,y);y = fx} isr.e. Hence there is k
such that y = fx iff (x,y)e D,. So we have y = fx iff there is w with y = Kw and
V(k,x,w)=0. The result follows at once.®

Consider what properties of K were used in the above proof. All that we
used is that K is the first component of J,;};. And the only fact we needed
aboutJ,;}, is that it is a surjection from N to N" *1, Since this map is obtained
from the functions K and L by compositions, all we need to ensure it is a

Sec. 9.7] The four squares theorem 127

surjection is that the map J; !, whose components are K and L, is a
surjection. Thus we immediately obtain the following version of Kleene’s
Theorem.

Theorem 9.18 Let U:N— N be primitive recursive, and suppose there is
another primitive recursive function U' :N— N such that the function sending
nto (Un,U'n) is a surjection from N to N2. Then there is a primitive recursive
V:N3—N such that for any partial recursive f:N— N there is k with

fx=U(py(V(k,x,y) = 0)).

9.7 THE FOUR SQUARES THEOREM

We have seen that in order to obtain the negative solution to Hilbert’s Tenth
Problem for Z is is necessary to show that any non-negative integer is the
sum of four squares. There are subtle proofs of this property, which give a
deep insight into why it holds. We will follow the simple direct proof due to
Lagrange.

We begin with an identity due to Euler, which is proved by multiplying
out and checking;

@+b2+2+d>)(x2+y?*+ 22+ 1) =(ax+ by +cz + dt)> +
(ay — bx + ct— dz)* + (az — cx — bt + dy)? + (at — dx + bz — cy)?.

It follows that the set of numbers which are the sum of four squares is
closed under multiplication. Hence it is enough to show that all primes are
the sum of four squares. Since 2 = 12 + 12 + 02 + 02, the result is true for 2. So
we will look at odd primes p.

We first show that there is some m with 0 <m < p such that mp is the sum
of four squares. Consider the p+1 numbers a®> and —1-b? where
0<a,b<(p-—1)/2. Two of these must have the same remainder when
divided by p. However a? and x2 have the same remainder when divided by p
iff p divides either a + x or @ — x. Thus the numbers a? must all have different
remainders. Similarly the numbers — 1 — b2 also have different remainders.
Hence there must be a and b such that 4%+ b% + 12+ 02 is divisible by p.
Write this as mp, and we see that m <p, because a and b are at most
(p-12.

Finally we show that if mp is the sum of four squares with 1 <m <p then
there is n with 1 < n <m such that np is also the sum of four squares. This
will prove the result by induction.

Let mp = Xx?, and suppose first that m is even. Then either every x; is
even, or they are all odd, or exactly‘two of them are even; in the last case we
may assume that x, and x, are even. In all three cases each of x; + x, and
x5 £ x, are even, So we can write (m/2)p as ((x; + x,)/2)% + ((x; — x,)/2)? +
((x3+x4)/2)% + ((x3—x4)/2)?, as required.

Now let m be odd. Define y; by x;=y; mod m and |y,| <m/2. Then
Ty?=Xx?=0 mod m, so we can define n by Ly? =nm. We cannot have
n=0. For this would make every y; zero, and so would make every x;
divisible by m. But then mp would be divisible by m?, which is impossible
since p is prime and 1 <m <p.

128 Hilbert’s tenth problem [Ch. 9

Plainly n <m, since each y, is less than m/2. Also m?np = (Zx?)(Zy?).
Use Euler’s identity to write m2np as the sum of four squares. We shall show
that each integer involved is divisible by m, whence np itself is the sum of
four squares. One of the relevant integers is Zx;y;. This is congruent mod m
to Ly?, since x; =y, mod m. But, as needed, Zy? =0 mod m. Another of the
integers is Xy, — X,y; +X3¥,— X,y3. This is congruent to y,y, —y,y; +
Y3Ya4 — YaY3,; that is, it is congruent to 0 mod m, as needed. Similarly the
other two integers involved are divisible by m, completing the proof of the
theorem.

10

Indexings and the recursion theorem

In this chapter we shall look at ways of numbering the partial recursive
functions, showing that all reasonable ways are essentially the same. We
shall also prove the recursion theorem, which is a very useful tool in
obtaining functions with special properties.

10.1 PAIRINGS

We have previously defined the bijections J,:N” — N (with J; being the
identity). In this chapter J,(x,, ..., x,,) willbe denoted by [x,, ..., x,] or by
[x]. We know that the ith component of J,; 'x is KL'~'x for i < n and is
L*~x fori = n.

By definition, [xy, ..., X,,+1] = [*1, [*¥2, - -, X.+1]]- Aneasy induction
shows that [x,, ...,x,.,] also equals [xy, ..., X,_q, [*., X, 11]]-
 Inductively, we can easily see that [x;, ..., x,] < [yy, ...,y]ifx; < y;
for all i, and that x; < [x,, ..., x,] for all i. In particular, if x; < y for all i

then [x,, ..., x,] < Large(n,y), where Large(n,y) is [y, ..., y], with y
occurring n times. From the previous paragraph, Large(n+1,y) =
J(y, Large(n,y)). As Large(1,y) = y, Large is primitive recursive. (Strictly
speaking, we cannot call Large primitive recursive, as we have not defined
Large (0,y). However, we never need to use Large(0, y), and so we give it
any convenient definition. The same applies to other functions which we
define later.)

Since L'x is a primitive recursive function of i and x (being the value at
(x,0) of the iterate of L), it follows that we can define a primitive recursive
function Seq:N®> — N such that Seq(i,n,x) = KL'~'xfor0 < i < nand
Seq(n,n,x) = L" 'x. It then follows that if x = [x;, ..., x,] then
Seq(i,n,x) = x;forl < i < n.

We now show how to define a primitive recursive function Cat:N*> — N
such that Cat(m,x,y) = [Xy, ..., Xp Y1, -] Whenx = [xy, ..., x,,]
and y = [y;, ..., y,)- Note that we do not require » as an additional
variable. From the definition of [], an easy induction shows that if Cat is
defined so that this formula holds when » = 1 then it holds for all n.

130 Indexings and the recursion theorem [Ch. 10

So let x be [x4, ...,x,,], whence x; = Seq(i,m,x) for1 < i < m. We
must define Cat(m,x,y) to be [xy, ... ,x,,, y]. Thus Cat(m,x,y) is the
unique z such that Seq(i,m+1,z) = Seq(i,m,x) for 1 < i < m and
Seq(m+1, m+1, z) = y. This condition is primitive recursive, since Seq is
primitive recursive. As z is the only number satisfying this condition, it is the
least such. Further z is at most Large(m + 1, x+y), and this primitive
recursive bound is enough to show Cat is primitive recursive.

10.2 INDEXINGS

Any way of numbering the partial recursive functions from N to N as
¢g, ¢4, - . . is called an indexing (or Gédel numbering), and if f = ¢; we call i
an index of f. The indexing is called universal if there is a partial recursive
function @ such that ®(i,x) = ¢x for all i and x. A universal indexing is
called acceptable if there is a recursive function ¢:N> — N such that the
composite ¢;¢; has c(i, j) as an index.

Any model of computation will provide an indexing, as each program (of
whatever kind) is a string on some countable alphabet, and we know how to
number strings. By Church’s Thesis any such indexing will be acceptable. To
obtain an acceptable indexing without using Church’s Thesis we shall have
to be specific about our model of computation. We will only need one
explicit indexing to work with.

Suppose we define ¢; by ¢x = U(ut(V(i,x,t) = 0)), where U and V are
primitive recursive. Kleene’s Normal Form Theorem tells us that U and V
can be chosen so that ¢y, ... is a universal indexing. Each proof of the
theorem will lead to an indexing. In particular, the proof in section 7.4 gives
a universal indexing which we call the modular indexing, while the proof in
section 9.6 gives a universal indexing which we call the diophantine indexing.

By Lemma 7.10 and the lemma below, the modular indexing is accep-
table. The lemma below also shows that the diophantine indexing is
acceptable; however, it will take some work to show that the diophantine
indexing satisfies the conditions of the lemma, and we will leave this
verification till later.

Lemma 10.1 A universal indexing is acceptable if for every partial recursive
f:N? — N there is a recursive s:N — N such that d;x = f(i,x) foralli and x.

Proof Since the indexing is universal, we can write ¢,¢x as ®(i, D(j, x)).
The function sending (n,x) to ®(Kn,®(Ln,x)) is partial recursive. So, by
hypothesis, there is a recursive function s such that this equals ¢,x. The
required function c is plainly s/.®

This lemma is a converse of a special case of the next result.

We can use the bijections J,, to obtain an indexing of the partial recursive
functions from N” to N. This indexing will also be denoted by ¢, ¢y, - . .
More precisely, we define ¢,:N” — N by requiring ¢;x to be ¢;[x]. Thus the

Sec. 10.2] Indexings 131

same notation ¢, can be used to refer to a function of any number of
variables, the number depending on the context.

Theorem 10.2 (Kleene’s s-m-n Theorem) Let &g, ¢y, ... be an acceptable
indexing. Then there is a recursive function s:N> — N such that, for any
i,m,n, and xy,...,X,, the function sending (y,,...,y,) to
Gi(X1s oo s Xy Y15 -« -5 V) has s(i,m,[X]) as an index. In particular, if
fiNm*+" — N is any recursive function, then the function sending y in N" to
f(x,y) can be given an index recursive in X.

Proof The second sentence is immediate from the first, since we can choose
an index i, for f, and the function we want is then s(iy, m, [x]).

Using the function Cat of the previous section and the conventions about
indexing functions of several variables, we are then asked to show that
s, m,xY = $:Cat(m, x,y). Now Cat is partial recursive, so we may take an
index k for it.

Suppose we can find a recursive function R:N — N such that ¢z, y =
[x,y] for all x and y. Then ¢;Cat(m,x,y) = & 0rPrmPry. Using the
recursive function ¢ occurring in the definition of an acceptable indexing,
this function has as an index c(i, u) where u = c(k,v) and v = c(Rm, Rx),
and so this index is the required s(i, m, x).

Define P and Q from Nto Nby Py = [0,y] and Qz = J(1+ Kz, Lz), so
that Q[x,y] = [x + 1,y]. These functions are partial recursive. Let p and ¢
be indexes for P and Q. Define Rby RO = pand R(x + 1) = ¢(q, Rx). Then
R will be recursive, since it is obtained by primitive recursion from the
recursive function sending z to ¢(q, z). It is easy to check by induction that R
has the required property.®

This theorem is often stated as ensuring the existence, for givenm and n,
of a recursive function s of m + 1 variables such that ¢,(x, y) has s(i, x) as an
index, where x is in N and y is in N”. This explains the name of the theorem.
Because of the particular pairings we have used, there is no need to mention
the integer n, and all the values of m can be treated at once.

Let ¢, d,,... be any acceptable indexing, and let y,,y,,... be any
indexing. Suppose we can translate from either to the other; that is, suppose
there are recursive fand g such that ¢; = y;and y; = ¢, for alli. Then, for
alliandx,yx = ¢x = ®(gi, x), so that y,, . . . is a universal indexing. It is
acceptable, since yyx = ¢gbx has c(gi,gj) as ¢-index, and so has
fc(gi, g))) as y-index.

Conversely, from the next lemma we see that any two acceptable
indexings can be translated into each other. We shall see later that the
translations can be chosen to be bijections.

Lemma 10.3 Let ¢y, ... be any universal indexing, and let y,, . . . be any
indexing such that for any partial recursive f:N* — N there is a recursive
function s:N — Nwith f(x,y) = vy forallxandy. Then there is a recursive
function t such that &; = v, for all i.

132 Indexings and the recursion theorem [Ch. 10

Proof We have ¢,x = ®(i,x) for alli and x. Since @ is partial recursive, we
need only let ¢ be the function s which corresponds to @.m

10.3 THE RECURSION THEOREM AND ITS APPLICATIONS

Throughout this section we shall work with an acceptable indexing ¢, . . .
whose universal function is ®, and with the function c¢ ensuring that the
indexing is acceptable.

Theorem 10.4 (Recursion Theorem) Let f:N — N be recursive. Then there
is some number n such that ¢, = ¢,,.

Proof By the s-m-n theorem, there is a recursive function g such that

$gry = ©(®(x,x),y) forallx and y. Let m be an index for fg, and let n be gm.
Then ®(m,m) = ¢,,m = fgm = fn. Now ¢,y = ®(D(m,m),y), by

definition, and this equals ®(fn, y) which in turn equals ¢y, as needed.®m
We can extend this theorem by including a parameter.

Theorem 10.5 There is a recursive function 9 such that, for any recursive f
and any x with f = ¢, we have dp, = q,.

Proof Let i be an index for the function g of the previous theorem. We
defined n to be gm, where m was an index of fg. Here fg is ¢,¢;, so we may
take m to be c(x, 7). Hence we define 0x to be gc(x,i).m

The recursion theorem is sometimes referred to as a ‘pseudo fixed-point’
theorem. We do not have fn = n, which would make r a fixed point of f.
Nevertheless, the functions with indexes fn and n are the same, so we have
something like a fixed point. There is another recursion theorem, which
provides a genuine fixed point for a certain operator.

As an example, there is an n such that the function with index n is
constant and equal to n (regarding an index as defining a program, we could
refer to this as a program which simply prints its own number on any input).
To see this, let f(i,x) = ifor all i and x. Use the s-m-n theorem to find a
recursive function s such that ¢,x = f(i, x), and obtain n using the recursion
theorem on the function s. Hence, for all x, ¢,x = ¢,,x by definition of »,
and the latter is just f(n,x), which is 7.

As another example, we will show that there is a recursive function f such
that f0 = 1and f(x+1) = (x + 1)fx for all x. Of course, we already know
that this is just the factorial function, which is primitive recursive. The point
is that the method can be used for harder cases. Most situations where a
function is defined in terms of itself (or by means of an expression involving
itsindex) can be treated as in the two examples. (Also, if the reader is used to
a programming language using recursive calls, a similar technique can be
used to ensure that only partial recursive functions are obtained by such
models.)

First note that there is exactly one function satisfying the given con-
ditions, and it is total. Next, for any i and x, define g(i, x) by g(i,0) = 1 and

Sec. 10.3] The recursion theorem and its applications 133

g(i,x+1) = (x+1)®(i, x). Then g s a partial recursive function, and we can
find a recursive function s such that ¢,;x = g(i, x) for all i and x. Let n satisfy
the conclusions of the recursion theorem for s. Then ¢,x = ¢,,x = g(n,x),
andso $,0 = land ¢, (x +1) = g(n,x+1) = (x+1)®(n,x) = (x + 1)d,x.
Hence ¢,, is the function we want, and so the function is both total and
partial recursive, as needed.

Lemma 10.6 Let u:N — N be any recursive function. Then there is a
one-one recursive function v:N — N such that §,, = ¢, for all x.

Proof Let s:N®> — N be the function of the s-m-n theorem. Define a
function g:N*> — N by

g(z,j,y) = 0if Ik <j(s(z,1,k) = s(z,1,))),
8(z,),y) = 1ifVk<j(s(z,1,k) # s(z,1,)))

and 3k <y(k>jAs(z,1,k) = s(z,1,))),
8(z,j,y) = ®(uj,y) otherwise.

Then g is partial recursive, being given by a definition by cases, the condition
for each case being recursive (see Proposition 4.8). Hence there is a
recursive function f such that ¢, (j,y) = g(z,j,y) for all z,j, and y. Let n
come from f by the recursion theorem. Then ¢,,(j,y) = g(n,j, y) for all jand

Define v by vj = s(n,1,j). If v is one-one, then, since s(n,1,j) is vj
plainly only the third condition in the definition of g(n, j, y) applies. We will
then have ¢,(j,y) = g(n,j,y) = ®(uj,y) = ¢,y for all j and y. By the
definition of s, we have ¢,;y = ¢,,(j,y) = ¢y, as needed.

We still have to show that v is one-one. Suppose not. Take the smallest j
such that vj = vk for some k <j, and then take the smallest such k. By
definition, since s(n,1,j) = s(n,1, k), we have g(n,j,y) = 0 for any y, and
we also have g(n, k,y) = 1forall y=j. Since ¢,;y = g(n,j,y) and ¢,y =
g(n, k,y), this contradicts the assumption that vj = vk.m

We have seen that there exist recursive translation functions between
any two acceptable indexings. With the aid of the previous theorem, we can
make such translations one—one.

Theorem 10.7 Let ¢y, ...andv,, ... beacceptable indexings. Then there is
a one—one recursive function f such that &; = vy for all i.

Proof By Lemma 10.3 there is a recursive function g such that ¢; = y,; for
all i. Applying the previous lemma to v, ..., there is a one—one recursive
function f such that y; = vy, for all i, as needed.®m

A recursive function p:N?> — N such that ¢; = ¢, , for all i and r and
such that {p(i, r); all r} is infinite for each i is called a padding function for the
indexing. Many models of computation have obvious paddings obtained by
adding unnecessary steps to the program. For instance, the abacus machines
M and (a,s,)"M compute the same functions whatever r and M are.

134 Indexings and the recursion theorem [Ch. 10

We shall look at the diophantine indexing later, and now consider the
modular indexing.

Proposition 10.8 The modular indexing has a padding function.

Proof Let g be a non-zero number, and define m, k,a; and so on as in
section 7.4. For any h # Olet m(h), k(h), a;(h) and so on be the correspond-
ing numbers for 4. Recall that NEXT(A, «, B) depends only on m (k) and the
smallest i such that rem(m(h),«) = a,h) and rem(m(h),B) = b,(h), and
that whether or not (4, «, B)e TERM also depends only on these two.

Let h be such that m(h) = m, a;,(h) = a;, b(h) = b;,c(h) = c;, and d;(h)
= d, for all i<k, and such that for all i with k <i< k(h) there is some j<k
with a,(h) = a; and b(h) = b; From the previous sentence and the
definition of ¢, it follows that ¢,, = ¢,. Write a and b for a; and b, .

The required function p can therefore be defined for g # 0 by p(g,r) =
8D%k+ P2k + 6Pk +5- We define p(0,r) to be p(gy,r), where g, is the Godel
number of a special modular machine computing ¢, so that g, + 0.m

The next result shows that the above padding function may be taken to
be one-one.

Lemma 10.9 Let f:N> — N be a recursive function such that for every i
{f(i, n); all n} is infinite. Then there is a one-one recursive function g:N*> — N
such that for every i and j there is some n with g(i,j) = f(i,n).

Proof Define h by h(r,u) = f(K(r+1),v), where

v = ut(Vs<r(f(K(r+1),t)>expu)). Then h is partial recursive by con-
struction, and 4 is total by the condition on f. Then we may define a function
G by GO = £(0,0) and G(r+ 1) = h(r,Hr), where H is the history of G.
Thus G is recursive, being defined by a course-of-values recursion from A.
By construction, G(r + 1) > Gs for all s < r, and so G is one-one. For any r
there is some »n with G(r + 1) = f(K(r +1),n), by construction. Then G/ is
the required function g.®

Theorem 10.10 If one acceptable indexing has a padding function (a one-
one padding function) then every acceptable indexing has a padding function
(a one—one padding function).

Proof Let d,, ... be an acceptable indexing with a padding function p and
let y,, ... be any acceptable indexing. By Theorem 10.7 there are one-one
recursive functions f and g such that y; = ¢, and ¢; = y,; for all i.

Then y; = &gz = Gpa.r) = Vepis,nfor all r. So we define the recursive
function g by q(i,r) = gp(fi,r). Because f and g are one-one, we find that
{q(i, r); all r} is infinite for any i, and g will be one-one if p is. Hence g is the
required padding function for y,,, ...®

Lemma10.11 Let ¢y, ...and vy, ... beacceptable indexings. Then there is
a recursive function g such that &; = v, for alliand 0 < gi < g(i + 1) for all
i

Sec. 10.3] The recursion theorem and its applications 135

Proof Take any recursive function ¢ such that ¢; = v, for all i; changing the
value of #0 if necessary, we may assume 0 # 0. We define gi by padding #
suitably.

Precisely, let p be a padding for the y-indexing. Define a function A
which is both partial recursive and total by A(i,u) = p(¢(i + 1), x), where x
= wy(p(t(i+1),y) > u). Hence h(i,u) > u, and the functions with
y-indexes ¢(i + 1) and A(i, u) are the same, since p is a padding. We now
define g by g0 = 10 and g(i + 1) = h(i, gi). Then g will be recursive, being
defined by primitive recursion from h, and g satisfies the required
conditions.®

We can now prove that any two acceptable indexings are essentially the
same. Readers who know the Cantor-Schroeder-Bernstein Theorem
(which says that there is a bijection between two sets if there is an injection
from each to the other) will see that the proof below is just a version of the
proof of that theorem, with due attention being paid to recursiveness.

Theorem 10.12 (Rogers’ Isomorphism Theorem) Let ¢, . ..andvy,, ... be
acceptable indexings. Then there is a recursive bijection t:N — N such that ¢;
= vy, foralli.

Remark Note that the inverse ¢~ of ¢ is also recursive, since it is total and
t=x = py(ty = x) for all x.

Proof Let fandg be recursive functions such that ¢, = yzandy; = ¢, and
with0 < fi < f(i + 1)and 0 < gi < g(i+1)foralli. Thenfi > iandgi > i
for all i.

Given x, we can define » and y as recursive functions of x by
n=pum<x(3z < x((g)"z = x))and y = uz((gf)"z = x). Now
(gf)'u = r+ u for all r and u. It follows that (gf)"y = x, by definition, but
that y is not in gfN. We call y the founder of x.

Define t by tx = fx if the founder of x is not in gN and tx = g~'x if the
founder of x is in gN. Plainly x is its own founder unless x € gfN, andso g~ 'x
is defined if the founder of x is in gN. Hence ¢ is total. Also gN is recursive,
since g is strictly increasing. Since g ~! is partial recursive, because g ~'x =
nz(gz = x), it follows that ¢ is partial recursive. Hence ¢ is recursive.

Suppose tx; = tx,. If we have tx; = fx;fori = 1and 2, ortx; = g~ 1, for
i=1and?2, plainly x; = x,. Otherwise we may assume that tx, = fx; and tx,
= g~ x,. Astx, = tx,, we then find that gfx, = x,. But then x, and x, have
the same founder, which contradicts the fact that tx, is fx; while tx, is g ~x,.
Hence ¢ is one-one.

Now take any x, and let u be the founder of gx, so that gx = (gf)"u for
some n. If u € gN then #(gx) = g ~'gx = x. This happens in particular if » is
0, since thenuis gx. If u ¢ gNwe canwritenasm + 1. Letv be (gf)"u. Then
gfv = gx, so x = fv. In this case v and gx have the same founder u. As
u ¢ gN, we then have tv = fv = x. Hence tis onto.m

When we use Church’s Thesis, we can only conclude that certain

136 Indexings and the recursion theorem [Ch. 10

functions are recursive. Detailed computations often show that relevant
functions are primitive recursive, and we can then show that various
constructed functions are primitive recursive. Thus, if the function s of 10.1
is primitive recursive then so is the function c. Conversely, if ¢ is primitive
recursive, so is the function s of the s-m-n theorem. The translation function
tof 10.3 will also be primitive recursive. The function 6 of Theorem 10.5 will
then also be primitive recursive, as will the function v of Lemma 10.6, and
the function f of 10.7.

We plainly cannot require the function ¢ of Rogers’ Isomorphism
Theorem to be primitive recursive, since any recursive bijection ¢ will enable
us to define a new acceptable indexing function from a given one. This fact is
associated with the use of unbounded minimisation in the padding function.
The padding function for the modular indexing is primitive recursive and
plainly satifies p(g,r) > r for all . Then the one—one padding function
corresponding to this by 10.9 is primitive recursive, since the minimisation
involved can be bounded. Then 10.10 shows that any acceptable indexing
which has a primitive recursive function c will also have a primitive recursive
one-one padding function. In 10.11 for the function g to be primitive
recursive we need p to be primitive recursive but we also require a primitive
recursive function 0 such that p(i,j) > y if j > 0(i,y), in order that the
minimisation should be bounded. It then follows that the function ¢ of
Rogers’ Isomorphism Theorem is primitive recursive provided both index-
ings have a primitive recursive function for composition and both padding
functions have corresponding functions 6. Bearing in mind how each
padding function is built, it is enough to show, for both indexings, that for
each i there is a primitive recursive function 4 such that s(i,1,x) > yifx >
hy; this, in turn, can be replaced by a condition on the functions giving an
index for composition.

We know, by Rice’s Theorem, that {n;d,, is a finite function} is not r.e.
We can define an indexing 0, 04, . . . of the finite functions as follows. It is
easy to see that for any finite function f there are n and x such that fi is defined
iffi<nand Seq(i+1,n+1,x) # Oand thenfi = Seq(i+1,n+1,x) - 1.
We give this function the index J(n,x). We can prove the following
extension of the Rice-Shapiro Theorem.

Theorem 10.13 Let A be aset of partial recursive functions. Then {n;$,eA}
is r.e. iff there is a r.e. set B such that A consists of all partial recursive
functions which extend 8,, for some n € B.

Proof By the s-m-n theorem, there is a recursive function g such that 9, =
¢gn. Let {n;¢, € A} be r.e. Then {n;0, € A} will also be r.e. By the
Rice-Shapiro Theorem, a function is in A iff it is the extension of some finite
function in A, so that the condition holds.

Conversely, suppose the condition holds. It is enough to show that
{(m,n);d,, extends 0,} is r.e. This can be done by the usual dovetailing
argument. We suppose that the universal function ® has the form
U(ut(V(n,x,t) = 0)) with U and V primitive recursive, using Kleene’s

Sec. 10.4] Indexings of r.e. sets 137

Normal Form Theorem. For each m, n, and r, we can first find the domain of
0,,, and for each x in this domain we can check whether or not there is some
t<r with V(m,x,t) = 0, and, if so, we can check whether or not 6,x =
U(ut(V(m,x,t) = 0)) for all such x.®

10.4 INDEXINGS OF R.E. SETS

Any acceptable indexing of the partial recursive functions leads to two
indexings of the r.e. subsets of N. Namely, we define W, to be the domain of
¢, and R; to be the range of ¢, By Rogers’ Isomorphism Theorem, any
change of acceptable indexings can be achieved by a recursive bijection.
Consequently, if W; and R; are the indexings of r.e. sets coming from
another acceptable indexing, there is a recursive bijection ¢ such that W} =
W,and R; = R,;.. Asaresult, we may as well use the modular or diophantine
indexings, for which Kleene’s Normal Form Theorem can be used.

Proposition 10.14 There is a recursive function f such that W; = R;.

Proof Let ® be the universal function, and letg(i,x) = x + ®(i,x). Theng
is partial recursive. Let f be a recursive function such that ¢,x = g(i,x) =
x + dux.

As in Proposition 2.1, we see that ;N = dom¢,, as needed.m

The converse is harder, and requires the use of the Normal Form
Theorem.

Lemma 10.15 There is a primitive recursive function Step:N* — N such that
Step(i,m,x) = ¢x+1 if Step(i,m,x) # 0, and there is some m with
Step(i,m,x) # 0iff bx is defined.

Proof We know that there are primitive recursive functions U and V
such that ¢x = U(ut(V(i,x,t) = 0)). Define Step(i,m,x) to be 0
if Vism(Vix,t) # 0) and to be 1+ U(ut<m(V(i,x,t) = 0)) otherwise.
Then Step is primitive recursive, being given by a definition by cases. If
Step(i,m,x) # 0, evidently there is some t < m with V(i,x,t) = 0. In this
case wt < m(V(i,x,t) = 0) is the same as ut(V(i,x,f) = 0), and so
Step(i,m,x) = 1+ ¢xx. Conversely, if ¢x is defined, there is some m with
V(i,x,m) = 0 and then Step(i,m,x) # 0.8

Lemma 10.16 There is a partial recursive function a:N — Nsuch that a(i) is
in R; if R; is not empty.

Proof R;is not empty iff there are m and x with Step(i, m,x) # 0, and then
Step(i,m,x) = 1isin R, Hence we may define a(i) to be Step(i,r) - 1,
where r is defined to be ut(Step(i, Kt, Lt) # 0).m

Lemma 10.17 There is a recursive function f such that for all i we have R; =
R;; and & is either total or nowhere defined.

138 Indexings and the recursion theorem [Ch. 10

Proof We formalise the arguments of Proposition 2.1. Thus we define a
partial recursive function 0:N>*— N by 0(i, m, x) = U(ut < m(V(i,x,t) = 0))
if 3t < m(V(i,x,t) = 0) and 08(i,m,x) = a(i) otherwise. By the s-m-n
theorem, there is a recursive function f with ¢z(m,x) = 6(i,m,x). By the
usual convention, ¢, can be regarded either as a function of one variable or
as a function of two variables.

If R; is empty, then a(i) is not defined. In this case, for any x and m, we
have Vt < m(V(i,x,t) # 0), and so ¢ is nowhere defined. If R; is not empty,
then a(i) is defined and ¢y is total. The arguments of Proposition 2.1 now
show that ¢, and ¢, have the same range.m

Proposition 10.18 There is a recursive function g such that R; = W, foralli.

Proof We continue to follow the arguments of Proposition 2.1. Let f be as
in the previous lemma, and define A(i, x) to be uy(®(fi,y) = x). This is a
partial recursive function. If R; is empty then A(i, x) is not defined for any x.
If R, is not empty, then ¢ is total. In this case h(i,x) = py(dpy = x) is
defined iff x € R, which equals R,. It follows that R, = W,,, where g is a
recursive function such that ¢ x = h(i,x).m

By Propositions 10.14 and 10.18 we can translate from either of the two
indexings to the other. In particular, in the proposition below, we may use
either indexing in each case. The statement is made in the form which is
easiest to prove.

Proposition 10.19 There are recursive functions m and u from N to N such
that W, N W, = W, yand R; U R; = R,; .
Proof Let 6(i,],x) be ®(i,x) + ®(j,x), and let m be a recursive function
such that ¢,,,;, ,x = 0(i,j,x). Then §,,; ;x is defined iff both ¢x and ¢x are
defined. Hence W,,,; ;, = W; N W,, as needed.

Now define h(i,j,x) to be ®(i,quo(2,x)) if rem(2,x) = 0 and to be
®(j,quo(2,x)) if rem(2,x) = 1. Then k is partial recursive, and we take a
recursive function u such that ¢, yx = h(i,j,x). It is easy to check that
Ru(i,j) = R,- U RI".

Since the complement of an r.e. set need not be r.e., we cannot find a
recursive function c such that W; = N — W, for all i. More strongly, it is not
possible to find a partial recursive function c such that ciis definedand W ; =
N — W, whenever W, is recursive.

For we may define a partial recursive function 6:N?> — N by 0(i,x) = 0if
i € Kand 6(i, x) undefined if i ¢ K, where Kisar.e. set which is not recursive.
We can then define a recursive function 4 such that ¢, x = 0(i, x). It then
follows that W,; = Nif i € K and is empty otherwise. In particular, W,,; is
recursive for all i. If there were such a function ¢, we would then have W_,;
non-empty iff i ¢ K. Hence N — K would be the counter-image under the
partial recursive function ch of the set {j;W; non-empty}. This set is r.e.,
being 73,{(j, x,); V(j,x,f) # 0}, giving a contradiction.

Sec. 10.5] The diophantine indexing 139

10.5 THE DIOPHANTINE INDEXING

We need to consider one indexing explicitly. Those readers who know about
modular machines can use the modular indexing and ignore this section.
Readers who have not looked at the material on modular machines will
know about diophantine properties, and they will need the material on the
diophantine indexing in this section. (A similar analysis can be given for the
exponential diophantine indexing, if any readers of this section have looked
at exponential diophantine properties but not at diophantine ones. The
details will be left to the reader.)

Throughout this section, the word ‘polynomial’ will mean a polynomial
with positive coefficients. An indexing for polynomials was given in section
9.6 together with a related indexing for r.e. sets. The explicit details of these
indexings will be needed.

We know that {(i,r); r € D;} isr.e. and hence so is {(i, x, y); [x,y] € D;}.
Hence there are polynomials P and Q such that [x,y] € D; iff 3x, ...
Ax, (P, x,y,%1, ..., X,) = Q(i,%,y,%y, ..., x,)). The notation is slightly
different from that in Theorem 9.16, as we allowed negative coefficients
there; the current formula is just another way of expressing the same
property. The diophantine indexing is obtained by defining ¢x as
K(/‘LW(P(i!x’Jn_-f}lw) = Q(i:nyr:-ﬂlw)))'

It is then immediate that [x,y] € D;ify = ¢x. Conversely, if [x,y] € D;
then ¢x is defined. In this case ¢x need not equal y; but if [x, z] € D, only for
z = ythen plainlyy = ¢x.

Lemma 10.20 Let P(i,x, ..., x,) be a polynomial not divisible by i. Then
there is a strictly increasing primitive recursive function p such that p(i) is an
index of P(i,xg, ..., x,) for all i.

Proof Note that we require P not to be divisible by i to cover the casei = 0,
because the zero polynomial is not given an index.

The constant i + 1 has an index k(i) given by k(0) = 0, k(i + 1) =
3[k(i),0] + 2, looking at the way polynomials are indexed. Then k is clearly
a strictly increasing primitive recursive function.

By induction on r and the formula for the index of a product, it follows
that (i + 1)"R(xo, ..., x,,) has a strictly increasing primitive recursive index
for any polynomial R and positive r. It then follows, by induction on the
degree, that Q(i + 1,x,, . . ., x,,) has a strictly increasing primitive recursive
index q(i) for any Q.

Now let P(i,xq, - .., X,) = Q(, %o, ..., %,) + R(xo, ..., x,), where Q
consists of those monomials involving i and R consists of those not involving
i. By hypothesis R is non-zero. Let r be an index of R. The function p defined
by p(0) = r,p(i+1) = 3[q(i),r] +2 is strictly increasing and primitive
recursive. By construction, p(i) is an index of P(i,x,, ... ,x,) for all i.m

Lemma 10.21 Let D be a r.e. subset of N2. Then there is a strictly increasing
primitive recursive function d such that Dg; = {x; (i,x) € D} for all i.

140 Indexings and the recursion theorem [Ch. 10

Proof There are polynomials P and Q such that (i,x,) € D iff
Ax, ... Ix,(P(,x0, %1, ... X,) = O(i, X0, %1, ..., X,)). We may assume
that P and Q both have non-zero constant term, adding 1 to both sides if
necessary. Let p and g be the functions corresponding to P and Q by the
previous lemma.

Then (i,xo) € D iff 3x, ... Tx,(P,xo, ..., X,) = Puixo, ..., X,))-
Define d(i) to be [p(i),q(i)]. Then d is a strictly increasing primitive
recursive function. Also, by definition, {xo; (i,x,) € D} has index d(i).m

Lemma 10.22 Let f:N?> — N be partial recursive. Then there is a strictly
increasing primitive recursive function d such that & 4x = f(i,x) foralliand x.

Proof The set {(i,x,y);y = f(i,x)}isr.e. Hence sois the set D = {(i, u);
Lu = f(i,Ku)}. Let d be the function corresponding to D by the previous
lemma.

If gx = ythen|[x,y] € D, andso (i, [x,y]) € D. It follows that f(i,x) =
y. Conversely, if f(i,x) = ythen (i, [x, z]) € Diff z = y. Hence [x, z] € D ;iff
z = y. We know that this ensures that y = ¢ x.®

By Lemma 10.1 we now know that the diophantine indexing is accep-
table, and hence that the s-m-n theorem holds. The function ¢ which occurs
in the definition of acceptability is given by C(l, J) = d[i,j]. Consequently, ¢
is primitive recursive and strictly increasing in each variable when the other
is kept constant; also c(i,j) = [i,j]. It is then easy to check that the function
R occurring in the proof of the s-m-n theorem is primitive recursive and
strictly increasing. The definition of the function s then shows that it is
primitive recursive and strictly increasing in each variable when the others
are held constant.

Lemma 10.23 Let D be ar.e. subset of N. Then there is a strictly increasing
primitive recursive function g such that Dy, = D for all r.

Proof There are polynomials P and Q such that x, € D iff

3Ax, ... 3Ix,(P(xo, ..., x,) = O(xo, ..., X,)). We may assume that P and Q
have non-zero constant terms, adding 1 to both if necessary. Let p and q be
indexes of P and Q.

Thenxy e DiffAx, ... Ix,(P+r+1 = Q +r+1). Letk(r) be the index
for r + 1 which was constructed in Lemma 10.20. Now P + r + 1 has index
3[p, k(r)] + 2, and similarly for Q + r + 1. It follows that the set defined by
the condition has index gr, where gr = [3[p,k(r)] + 2, 3[q,k(r)] + 2].m

Lemma 10.24 Let f:N — N be partial recursive. Then there is a primitive
recursive strictly increasing function g such that ¢g,x = fx for all r and x.

Proof The set D = {u;Lu = fKu} is r.e. Let g be the function which
corresponds to D by the previous lemma.
Then, for anyr,y = fxiff [x,y] € Diff [x,y] € D,,. In particular, given r

Sec. 10.5] The diophantine indexing 141

and x there is at most one y with [x, y] € D,,. It follows that [x, y] € D,, iff y
= X, as needed.m

Proposition 10.25 The diophantine indexing has a primitive recursive pad-
ding function which is strictly increasing in each variable.

Proof We can apply the previous lemma to functions of two variables,
using the standard translation between functions of one variable and
functions of two variables.

Hence there is a strictly increasing primitive recursive function g such
that ®(i,x) = ®@,,(i,x) for all ,i, and x. Let s be the function of the s-m-n
theorem. Define p(i,r) to be s(gr,1,i). Then p is primitive recursive and
strictly increasing in each variable. By definition, ¢x = ®(,x) = @, (i,x)
= p(i, n¥, 50 p is the required padding function.®m

Part IT

LOGIC

11

Propositional Logic

In this chapter we look at propositional logic, and we look at the deeper and
more important predicate logic in the next chapter. Propositional logic is
essentially the study of how connectives such as ‘not’, ‘and’, ‘or’, and if...
then...’ are used. We begin with some background, and then go on to a
precise definition of the formulae we study. We look at truth and proof and
some of their properties. Truth and provability are very different concepts.
However, we shall see that true formulae and provable formulae are the
same, this result is Gédel’s Completeness Theorem, which will take two
sections to prove. (I feel this informal statement of Gédel’s theorem is
helpful, but I must warn readers that my attempt to give an account of the
theorem before introducing the precise definitions has distorted the
statement noticably.)

11.1 BACKGROUND

Logic is, in its origins, the study of arguments to see which arguments are
correct and which are not. Some examples of arguments, both correct and
incorrect, are given below.

(1) London is in England and Paris is in France. Therefore Paris is in
France.

(2) London is in England and Paris is in Germany. Therefore Paris is in
Germany.

(3) Londonisin England or Paris is in France. Therefore Paris is in France.

(4) London is in England or Paris is in Germany. Therefore Paris is in
Germany.

(5) If it is raining and I am not wearing a hat then I am either carrying an
umbrella or getting wet. But it is raining and I am not carrying an
umbrella. Therefore I am either wearing a hat or getting wet.

146 Propositional logic [Ch. 11

(6) Socrates is a man. All men are mortal. Therefore Socrates is mortal.

(7) All cows have four legs. This object has four legs. Therefore this object
is a cow.

(8) Some cows are black. This is a cow. Therefore this is black.

The first five arguments are arguments of propositional logic. The last
three, which refer to ‘some’, ‘all’, and particular objects, are arguments of
predicate logic. Propositional logic just looks at how sentences are con-
nected by words like ‘or’, ‘and’, and so on, and does not have to look at the
sentences connected in any more detail, whereas predicate logic has to look
at the internal structure of sentences.

The first and sixth argument are obviously correct, while the fifth is easily
seen to be correct.

The seventh and eighth arguments are obviously incorrect. Incorrect
arguments such as these are often used in politics to try and discredit
opponents. As an example, consider ‘Some members of the Campaign for
Nuclear Disarmament are communists. He is a member of the Campaign for
Nuclear Disarmament. Therefore he is a communist’.

The fourth argument is obviously incorrect, since its assumption is true
but its conclusion is false. The third argument has both assumption and
conclusion true; nonetheless it is incorrect. This will be made clear when we
say in section 11.3 precisely what is meant by a correct argument. For the
moment, observe that correctness of an argument depends only on the ways
we use words like ‘or’, but does not depend on the individual sentences
which are connected . Since the third argument has exactly the same form as
the fourth, they must both be correct or both incorrect. Of course, it should
not be particularly surprising that an incorrect argument should have a true
conclusion; one can be lucky on some occasions.

The second argument, although both assumption and conclusion are
false, is a correct argument. This holds for the same reasons as in the
previous paragraph. The second argument has the same form as the first, so
they must both be correct or both incorrect.

It is surprising, at first, that the second argument is correct. But, if we
look more closely, all that an argument’s correctness can tell us is that the
conclusion is true provided that the assumptions are true; it cannot tell us
that the assumptions are in fact true. This has some consequences in the
everyday world. If someone says to you ‘Be logical’ it is extremely likely that
what they really mean is ‘Argue from my assumptions’ (their hidden
assumption, which they never mention, might be, for instance, ‘Animals
have no feelings’ if they were claiming your objections to battery farming
were illogical). There is, of course, no reason to accept the other person’s
assumptions, which often get hidden in a smoke-screen of alleged logicality.
Even if you are shown that a conclusion you do not want to accept follows
logically from assumptions you have accepted, that does not mean in
practice that you have to accept the conclusion,; it is always open to you to
reconsider the assumptions, and which you do will depend on how strongly

Sec. 11.2] The language of propositional logic 147

you have previously accepted the assumptions and how strongly you don’t
want to accept the conclusion.

The other, and more formal, aspect of logic is an analysis of what exactly
we mean by saying that a statement is true or that it is provable. These turn
out to be very different notions (especially in predicate logic, where truth is
an essentially infinite concept, whereas a proof is something finite; this
distinction does not appear in propositional logic). Nonetheless, one of the
major results of formal logic is Go6del’s theorem which shows that a
statement is true iff it is provable (but see the warning in the introduction to
this chapter).

Readers may feel some disquiet at the notion of a formal analysis of
logic. After all, aren’t we going to have to use logic in talking about logic,
and doesn’t this mean that we have to know our results anyway before we
can prove them? We deal with this by distinguishing between formal logic,
which is carried out in a precise formal language, and the informal logic we
use to argue about the formal language; informal logic will be given in
English. But if we look closely at the informal logic (and we could perform
this look using yet another language, say French, to talk about it) we see
that, although formal and informal logic parallel each other closely, infor-
mal logic is often much simpler. For instance, a formal result about all
sentences may have a corresponding informal result, but the informal result
may actually be used, not about all sentences, but only about (say) 64
specific sentences used in the specific results we wish to prove. Hilbert had
hoped that it would be possible to reason about logic using informal methods
that would be universally accepted as correct (in particular, using only finite,
constructive reasoning), and that it might be possible to prove the consist-
ency of mathematics by such methods. The Second Incompleteness
Theorem of Godel shows that this is not possible (at least, not if our
reasoning is primarily about manipulation of formal symbols). For more
about the relationship between formal and informal logic it is best to consult
a book on logic with a philosophical approach, rather than a mathematical
one. Such a book might well consider aspects of reasoning other than
informal versions of the formal logic. For instance, it might discuss argu-
ments of the forms 'A. So probably B’ and 'A. So I believe B'. Arguments of
this kind cannot be used to prove mathematical theorems, but probably
every mathematician has used such arguments in discovering new results.

11.2 THE LANGUAGE OF PROPOSITIONAL LOGIC

Definition The language P of propositional logic is the set whose elements
are

(1) the propositional variables p,, for all neN,
(2) some of the logical symbols L, -, A, —, V, and <,
(3) the parentheses (and).

148 Propositional logic [Ch. 11

This definition is not really satisfactory, because (2) is not precise
enough. There are various choices possible in (2). We could take all the
stated symbols, we could take only L, =, A, and —, we could take only L,
A, and—, and other variations are possible (but we may not take only one of
the symbols). The differences are unimportant, and are rather like the
differences between dialects of a spoken language. For the sake of definite-
ness, in this section take the symbols as being, L, =, A, and — (the reason
for including — is that it is used slightly differently from the other symbols).
Inlater sections, we take the symbols as being only L, A, and—. Whichever
symbols we choose, the other symbols can be regarded as auxiliary symbols,
defined in terms of the given ones. This will be looked at further in the next
section.

Intuitively, the symbols —, A, V, —, <> are meant to correspond,
respectively, to ‘not’, ‘and’, ‘or’, ‘if . . . then . . .’ (the word ‘implies’ is also
used for this), and ‘iff’; L is referred to as ‘lie’ or ‘absurdity’, and it is meant
to correspond to a sentence which must be false. We will not look at
meanings until the next section, but the intended meanings will be a guide to
the definitions we make.

For convenience, we may use p, q and r as propositional variables, rather
than the more precise p,, for various n.

We will want to call certain strings formulae. It is obvious that p A should
not be a formula (if we consider the intended meaning of A as ‘and’, this
string doesn’t correspond to a sentence); less obviously, but still fairly
clearly, the string pAg—r is not a formula, because there are two possible
sentences it could mean. This latter example explains why parentheses are
needed. It turns out that pAg, which we might expect to be a formula, is not
one; the reason is technical, as this happens because of the way it is
convenient to use parentheses in formulae. We now proceed to give a
definition of formulae.

Our first attempt at saying what a formula should be is the following.

(i) L andevery p, are formulae,
(ii) if ¢ and y are formulae then so are (—=¢), (pAy), and (¢p—v),
(iii) a string is a formula iff (i) and (ii) require it to be a formula.

The trouble is that, although in an intuitive sense this tells us what
formulae are, condition (iii) is too imprecise to work with. So we make the
following definition, which will require some justification before we can be
sure it means anything.

-Definition The set of formulae is the smallest set of strings such that

(1) L and every p, are in the set,

Sec. 11.2] The language of propositional logic 149

(2) if ¢ and vy are in the set then so are (—¢), (PAv), and (dp—v).

This definition would be satisfactory if we knew that there is a smallest
set satisfying (1) and (2). We now proceed to prove this.

First observe that there are sets satisfying (1) and (2), for instance the set
of all strings. Now suppose we have a collection of sets X; (for i in some index
set) each of which satisfies (1) and (2). It is easy to check that the intersection
of the sets X; also satisfies (1) and (2). In particular, the set W, which is
defined to be the intersection of all sets satisfying (1) and (2), will itself
satisfy (1) and (2). Since it is, by definition, contained in every set satisfying
(1) and (2), it is the smallest set satisfying (1) and (2). We now simply define
the set of formulae to be this set W.

It is easy to give examples of formulae. For instance, (po/Ap,),
(—=(po/Ap1)), and ((= (poAp1))—((—(p4— L))— L)) are all formulae. It is
not clear from the definition how to tell whether or not a string is a formula.
We look at this question shortly.

Plainly a string of length 1 is a formula iff it is either L or p,,, while a string
o of length greater than 1 is a formula iff « can be written either as (—) or as
(BAY) or (B—7) where B is a formula and, in the two cases where it exists, 7y is
also a formula. Since B and y (if it exists) are shorter than «, this seems at first
sight to give an inductive definition of formulae which is simpler than the
definition given. Informally, this process works (and is similar to the
definition of abacus machines in Chapter 5). But if we attempted to give a
formal definition along these lines, we would be defining a function from N
into the set of all sets of strings (sending # to the set of all formulae of length
<n). In order to justify the definition of such a function by induction, we
would have to use the arguments of section 3.7. If this were done in detail, it
would involve arguments similar in detail to those used in the justification of
the current definition, but much more complicated.

Because the strings B and y of the previous paragraphs are segments of o,
the above can provide an inductive method of testing whether or not a string
is a formula. We will obtain later extra conditions which all formulae satisfy
and which shorten this search.

Many results about formulae are proved by induction. Ordinary induc-
tion (on the length of the formula) could be used, but it is usually more
convenient to use the following result.

Theorem 11.1 (Principle of Induction for formulae of propositional
logic) A property of strings holds for all formulae iff it holds for L and
every p, and holds for the strings (—¢) and (pAvy) and (—vy) whenever it
holds for ¢ and v.

Proof Let X be the set of all strings having the property. Then X satisfies
(1) and (2) in the definition of formulae. Since W, the set of all formulae, is

150 Propositional logic [Ch. 11

the intersection of all sets satisfying (1) and (2), it follows that X contains W,
as required.m

It is obvious that every formula, except L and p,,, must begin with (and
end with).

Lemma 11.2 (i) The number of occurrences of the left parenthesis (in a
formula is the same as the number of occurrences of the right parenthesis) in
the formula.

(i) The number of occurrences of (in a proper initial segment of a
formula is greater than the number of occurrences of) in this segment.

Corollary A proper initial segment of a formula is not a formula.

Proof The corollary is obvious from the lemma.

Plainly L and p, have zero occurrences both of (and of). Suppose ¢ and
y each have the same number of occurrences of (and), say m occurrences in
¢ and 7 in y. Then (—¢) has m+1 occurrences of each parenthesis, while
(dAvy) and (¢p—y) both have m+n+1 occurrences of each. By the Principle
of Induction, all formulae have the same number of occurrences of (and).

The formulae L and p, have no proper initial segments. Hence all their
proper initial segments have more occurrences of (than of). Now suppose ¢
and y have this property. The proper initial segments of (—¢) are plainly
either (or (- or (-, where « is a proper initial segment of ¢, or (—¢. Since
we already know that (and) occur the same number of times in ¢, we see
that all these have more occurrences of (than of).

Now consider the proper initial segments of (¢—v). They are (or («,
where « is a proper initial segment of ¢, or (¢ or (¢p— or (¢—p, where Bisa
proper initial segment of y, or (¢—y. By the first part, ¢ and y have the
same number of occurrences of (and), while by assumption « and B have
more occurrences of (than of). Hence all these have more occurrences of (
than of). A similar argument works for (pAy). The result follows, by the
Principle of Induction.m

In addition to proving results about formulae by induction, we will also
want to define functions from the set of formulae by induction. We shall also
define properties of formulae by induction; this can be regarded as defining a
function (the characteristic function of the set given by the property) in
order to fit it into the same framework. A formal justification of definitions
by induction can be given along the lines of section 3.7 or the exercises to
that section (if we follow the approach in those exercises an allowable
function is a function satisfying the relevant conditions and defined either for
all formulae or for all formulae of length <n for some).

There is, however, one point that needs to be cleared up before
definitions by induction can be made. If it were possible to write a formula ¢
as, for instance, both (¢;A¢,) and (¢s—d,), then the value of the function
on ¢ would be given, on the one hand in terms of its values on ¢, and ¢,, and

Sec. 11.2] The language of propositional logic 151

on the other hand in terms of its values on ¢3 and ¢, and these could give
two incompatible expressions for the value of the function on ¢. (Formally,
if we use admissible sets, then Lemma 3.18 would go wrong if ¢ could be
written in two ways. If we used allowable functions then it would not be
possible to extend an allowable function defined on the set of formulae of
length <n to one defined on the set of formulae of length <n+1 if a formula
could be written in two ways.) The Unique Reading Lemma below shows
that this situation can never arise.

Lemma 11.3 (Unique Reading Lemma) Any formula ¢ is of exactly one
of the following forms.

(1) L

(2) p, for some n which is determined by ¢,

(3) (=) for some formula ¢, which is uniquely determined by ¢,

(4) (d1Ad,) for some formulae ¢, and §, which are uniquely determined by

(&) (d;l—>¢2) for some formulae ¢, and b, which are uniquely determined
by ¢

Proof By definition every formula is of one of these forms. Plainly ¢ cannot
be of form (1) or (2) and of another form. Since the propositional variables
are distinct, n is given by ¢ if ¢ is of type (2).

If ¢ is of type (3) its second symbol is —. If it is of types (4) or (5) its
second symbol is the first symbol of the formula ¢, and this is either L or p,,
for some n or is (. Hence a formula of type (3) is not of types (4) or (5). Also,
if ¢ is of type (3) the formula ¢, is obtained from ¢ by removing the first two
symbols of ¢ and the last symbol, and so ¢, is uniquely determined by ¢.

We have to show that a formula cannot be both of forms (4) and (5), and
that the expression is unique. Both of these are done at once. Let « and !
stand for-either A or —, and suppose that ¢ can be written as (¢;+d,) and as
(¢3!d4). Then both (¢; and (¢5 are initial segments of ¢. Hence one of ¢,
and ¢5 is an initial segment of the other. By the corollary to Lemma 11.2,
neither can be a proper initial segment of the other, so they must coincide.
Hence « is the same as !, since both are the symbol immediately after the last
symbol of ¢;. Then ¢, and ¢, are plainly also the same.®

Notice that, by Lemma 11.2(ii), if the formula ¢ is either (¢;Ad,) or
(¢,—¢,) then the shortest string B such that (B is an initial segment of ¢ and
B has the same number of left parentheses and right parentheses is ¢,. This
leads to the following (inductive) test for whether or not a string is a formula.
It follows (using Church’s Thesis) that the set of formulae is recursive; more
will be said about this in the next chapter.

Let a be astring. Step 1: if wis L or p, then «is a formula, otherwise go to
step 2. Step 2: perform simple tests on o, such as ‘does « begin with (and end
with)’ or ‘does o have the same number of (as of)’, and conclude that « is
not a formula if it fails these tests (other simple tests can be used, for instance
that of Exercise 11.1; also step 2 can be omitted if we wish, but it tends to

152 Propositional logic [Ch. 11

shorten the procedure); if o passes these tests go to step 3. Step 3: if & can be
written as (—f) then « is a formula iff B is a formula; if « cannot be written in
this way go to step 4. Step 4: find the shortest string p such that (B is an initial
segment of « and P has the same number of (as of); if there is no such string,
conclude that « is not a formula; if there is such a p but the symbol
immediately following the last symbol of B is not A or —, conclude that « is
not a formula; finally, if this symbol is A or —, then write o as (BAy) or as
(B—Y), or conclude that « is not a formula if this can’t be done; then « is a
formula iff both B and y are formulae.

We can define by induction the parsing tree of a formula. This is a tree
whose vertices are each labelled by a formula. For the precise definition of a
tree see section 11.4. In fact, our inductive definition will automatically give
a graph which is a tree.

Definition The parsing tree of a formula is given inductively as follows. If ¢
is either L or p, then the parsing tree of ¢ has one vertex labelled with ¢ and
has no edges. If ¢ is (—¢;) then the parsing tree has a vertex with label ¢, an
edge from ¢ to the vertex labelled ¢, of the parsing tree of ¢;, the remaining
edges and vertices with labels being those of the parsing tree of ¢,. If ¢ is
(d1/A) or (d;— ;) then the parsing tree of ¢ has a vertex labelled ¢, and
two edges starting at this vertex, one going to the vertex labelled ¢, of the
parsing tree of ¢;, the other to the vertex labelled ¢, of the parsing tree of
¢,, the other edges and labelled vertices being those of the parsing trees of

¢1 and ¢,.

This definition looks complicated, but is quite easy when we draw pictures.
Our pictures will be like family trees, with the start at the top, not the
bottom. For convenience, when ¢ is (—¢;) we draw the edge from ¢
vertically downwards, while if ¢ is (¢;Ad,) or (¢;—¢,) we draw the edges
down and to the left and right; in the latter case, we mark the angle at the
vertex with A or —, respectively. Some examples are given in Fig. 1.
Reversing this process, if we have a tree, marked with A or — wherever
there are two edges coming down from a vertex, and with the bottom
vertices having labels which are either L or p,, for some n, we can build
upwards from the bottom labels on the vertices until we reach at the top
vertex a formula ¢ whose parsing tree this is. Examples are given in Fig. 2.
We can combine the process of finding the parsing tree and the process
for determining whether or not a string is a formula into one process, which
provides the parsing tree of « if o is a formula and tells us « is not a formula if
it is not. Step 0: take a vertex and label it «. Perform steps 1 and 2 of the
previous process. The third step becomes the following. Step 3: if « is of
form (—p) take the vertex labelled o and join it (by an edge going
downwards) to a vertex labelled B; otherwise go to step 4. Step 4: try to find
and y as in the previous step 4; if this cannot be done « is not a formula; if it
can be done join the vertex labelled « by an edge going down and to the left
to a vertex labelled B and by an edge going down and to the right to a vertex

Sec. 11.2] The language of propositional logic 153

(= (=A@~ Dp)))
(QUINY) EX (V)]
T (0 (eA@~p))
((ﬂp)/\ q) (r - -I-) (p/\(q - p))
A
(=p)
1 p
13 @q-p)
q p
Fig. 1 — Examples of parsing trees.
A
p q

Fig. 2 — These correspond to ((p — (—1)) = (¢ A p)) and to ((—=p) A (—9q)),
respectively.

labelled y. Step S: keep repeating these steps on the various strings 8 (and y)
obtained; if « is a formula the process will stop (when we have got strings of
length 1 at every bottom vertex) with the parsing tree of «; if, at any stage in
the process, we reach a string which is not a formula then the original string o
is not a formula. One of these two cases must happen, since at each stage we
introduce lower down the tree a shorter string than the previous one.

Definition The subformulae of a formula are defined inductively as follows.
If ¢ is either L or p, then ¢ itself is the only subformula of ¢. If ¢ is (=)
then the subformulae of ¢ consists of ¢ itself and all subformulae of ¢,. If ¢
is either (¢;Ady) or (¢p1—¢,) then the subformulae of ¢ are ¢ itself and all
subformulae of ¢, or of ¢,.

For instance, the subformulae of (p/Aq) are (p/Aq), p, and g, while the

154 Propositional logic [Ch. 11

subformulae of ((—=(pAgq))—(—(r—L1))) are the formula itself together with
("'(P/\Q)), (_‘(r'—)l))’ (p/\q)v P9 (r_’l)’ r,and L.

The presence of parentheses can make formulae very difficult toread. As
a result, we make conventions which allow us to omit them. However, it
should always be remembered that these are just conventions, and the
precise definitions must include the parentheses. We shall always omit the
outermost parentheses, writing, for instance, Ay and ¢—y. We shall also
assume that — connects as little as possible, and that A connects as little as
possible subject to the conditon on —. For instance,
((=(pAg))—=((—=p)A(=r))) is abbreviated to —(pAg)——-pA—-r. We shall
also write o;AP,A . . . ¢, to abbreviate (G; A(GA(. . A D). .. .

Definition A formation sequence for a string « is a sequence «;, . . . ,q, of
strings (for some n) such that «,, is «, and, for all r<n, either o, is L oritisp,
for some k, or there is some i<r such that «, is (- ;) or there are some i,j
both less than r such that «, is either (o;Aq;) or (6— ;).

Proposition 11.4 A string is a formula iff it has a formation sequence.

Proof Letoy, ... ,x,beaformationsequence of o. By induction on r, we
see that, for all r<n, the string «, is a formula. In particular « is a formula.
Conversely, using the Principle of Induction for formulae, we show that
every formula has a formation sequence.
This is plainly true for L and p,, both of which have a formation
sequence of length 1. Suppose ¢ and y have the formation sequences

oy, . . . ,0,and By, . . . B Itiseasy to see that thesequence oy, . . . , o,
(—¢) of length n+1 is a formation sequence for (—¢), because «,, is ¢. Also
the sequence oy, . .., o, B1, . . . sBm, (¢—V) of length m+n+1 is a

formation sequence for (¢—v), and similarly for ($ Ay). The result follows
by induction.m

Note that any formula will have infinitely many formation sequences,
since we can always insert irrelevant entries in the sequence. Even if we only
consider the shortest formation sequences they will not be unique, because
we can alter the order of the entries.

Exercise 11.1 Show that any formula has the same number of left paren-
theses as it has (in total) of the symbols =, A, and —.

Exercise 11.2 Show that the subformulae of a formula ¢ are exactly those
formulae which occur in the parsing tree of ¢.

Exercise 11.3 Show that every subformula of ¢ occurs in every formation
sequence of ¢.

Sec. 11.3] Truth 155

Exercise 11.4 Show that every formula ¢ has a formation sequence
consisting entirely of subformulae of ¢.

Exercise 11.5 Find the parsing tree and a formation sequence for
(= (= (=p))) and for (((=p)—>@AIN(=(L—9))).

Exercise 11.6 Find the formulae whose parsing trees have the patterns
shown in Fig. 3.

and

Fig. 3.

11.3 TRUTH

Up to now formulae have simply been regarded as strings, with no meaning
attached to them. We now see how to give them meanings, and to talk of
their truth or falsehood.

From now on, small Greek letters will denote formulae (we shall never
need to look at arbitrary strings) and capital Greek letters will denote sets of
formulae.

We take the two-element set {T,F}, where we think of T and F as
standing for ‘true’ and ‘false’. We then define a valuation as a function from
W, the set of all formulae, to {T,F} satisfying certain conditions.

Definition A valuation is a function v from W to {T,F} such that

v.L=F, v(~¢)=Tiff vd=F, v(pAy)=T iff vé=T=vy, and
v(d—vy)=Fiff vé=T and vy=F.

We can express this information in a table, known as a truth-table. The
truth-tables for A and — are

156 Propositional logic [Ch. 11

¢ | v | dAy and ¢ | v ‘ ¢—y respectively,
T | T T T |T T
T | F F T | F F
F | T F F | T T
F | F F F | F T
while that for — is
¢ |-
T F
F T

Here the third line of the table for A, for instance, says that if v is a valuation
with v=F and vy=T then v(¢Ay)=F.

Plainly the formulae for A and — fit in with their intuitive meanings as
‘and’ and ‘not’. Also, our requirement that v.L=F for any valuation v
explains why L isreferred to as ‘lie’ or ‘absurdity’. It is not quite so clear how
the formula for — fits in with its meaningas ‘if . . . then . . . ’. The factthat
v(¢—vy)=Twhen vd=Fis especially surprising. We could regard this simply
as being a definition that has turned out to be useful. Alternatively, we could
argue that, for instance, we would (presumably) accept a statement such as
‘For all n in N, if 4 divides n, then 2 divides n’ as being true. But then we
would (probably) insist that this requires the truth of the specific instances ‘if
4 divides 5, then 2 divides 5’ and ‘if 4 divides 6, then 2 divides 6’. Thus it does
seem that, if we want v(¢—y) to depend only on v and vy and if we also
want the symbol V, which is used in the predicate logic considered later, to fit
in with its intended meaning as ‘for all’, we are forced into the given
definition.

Now consider the truth-table for =(=pA-y). Itis

Oy | =0 | -y | (=dpA-y) |ﬂ(ﬂ¢/\ﬂ\v)
T| T | F F F T
T|F | F T F T
F|T | T F F T
F|F | T T T F

Now, if the symbol V is to correspond to its intuitive meaning of ‘or’, we
would like v(¢Vy) to be T except in the case when vé=F=vy. From the
above truth-table, we see that this can be done by defining ¢Vy to be an
abbreviation for —=(—$A—-vy) (note that, in accordance with our conven-
tions, we have omitted the outer pair of parentheses). When we use V and
omit parentheses, we require it to govern as little as possible subject to the
rule that — must govern as little as possible.

Sec. 11.3] Truth 157

Similarly, we define ¢y to be an abbreviation of (p—y)A(y<¢), and
we find that v(¢pey)=T iff vd=vy.

We also find that v(¢— L)=T iff vo=F, so that v(¢— L)=v(~0).

Because of this, we now change the logical symbols used in our language
to L, A, and — only, regarding — as an auxiliary symbol with —~¢ being
simply an abbreviation of ¢— L. It follows that, in inductive arguments, we
have only to show that a property holds for Ay and ¢—y when it holds for
¢ and y.

We refer to the symbols A, V and - as ‘conjunction’, ‘disjunction’, and
‘negation’, respectively.

Let S be any set of propositional variables. We define W(S) to be the set
of those formulae whose propositional variables are in S. A partial valuation
is a function with values in {T,F}, whose domain is W(S) for some S, which
satisfies the conditions for a valuation when the formulae are in W(S).

Let v and w be partial valuations defined on ¢, and suppose that
vp,=wp, for every propositional variable p, occurring in ¢. It is easy to
check (inductively) that vé=w¢.

Let S be any set of propositional variables. Because we can make
definitions by induction, any function v from S to {T,F} extends to a unique
partial valuation with domain W(S).

The formula ¢ is called a tautology if v¢=T for all valuations v, and is
called a contradiction if vo="F for all v. If there is at least one v with v$=T,
we say ¢ is satisfiable. When v$ =T, we say that ¢ satisfies v (or, if it is more
convenient, that v satisfies ¢). If I" is a set of formulae, we say v satisfies I" (or
I" satisfies v) if v satisfies y for every yin I'.

Plainly ¢ is a contradiction iff —¢ is a tautology iff ¢ is not satisfiable. At
first sight it is not clear how to tell whether or not ¢ is a tautology (or a
contradiction or satisfiable) since there are infinitely many valuations to
consider. But let S be the set of propositional variables occurring in ¢. Let v
be any valuation, and let w be its restriction to S. Then w extends uniquely to
apartial valuation w defined on W(S), and vé=w¢. Hence we do not have to
look at all valuations, but only at those partial valuations which extend a
function from Sto {T,F}. If S has n elements there are 2" such functions, and
we simply have to check all the corresponding partial valuations on ¢.

There is no known method of finding whether or not ¢ is a tautology (or
satisfiable) which is essentially faster than making this check. We can do this
by making a truth-table for . However, there are methods which may be
faster in particular cases.

Consider the formula (68— (¢—vy))—((6—d)—(6—v)), which we wish
to show is a tautology. First observe that we do not need a truth-table with 2"
lines, where n is the number of propositional variables occurring in the
formula. A truth-table of eight lines will be enough, corresponding to the
eight possibilities for v0, v, and vy. The reader should construct such a
truth-table, and will find it is quite complicated because of its large number
of columns (and even eight rows is a lot to deal with).

Now ask instead what conditions a valuation v must satisfy if v sends this
formula to F. By the truth-table for —, it must have v(6—(¢—y))=T and

158 Propositional logic [Ch. 11

v((6—>¢)—(6—y))=F. The second of these requires v(6—¢)=T and
v(6—vy)=F, which in turn requires v6=T and vy=F. Since v and also
v(6—¢) and v(6—(¢p—v)) are all T, we then get that vé=Tand v(¢p—y)=T.
But these contradict vy=F, so no such v can exist.

Let ¢ be a formula and I" a set of formulae. We call ¢ a semantic
consequence of I', and write ['=¢ if vo=T for every v which satisfies I". If we
do not have I'=¢ we write T .

We can now explain what a correct argument (for propositional logic) is.
Let I' be a set of formulae, which we will assume uses any of —, V, A,—, and
< (but, for convenience, does not use L). Associate, in some way, an
English sentence to every subformula of every formulainI". Do this so that if
A, and A, correspond to ¢; and ¢, then the sentence corresponding to
¢1—>, has the same meaning as ‘if A then A,’, the sentence corresponding
to ¢;Ad, has the same meaning as ‘A, and A,’, and so on. (We must say ‘has
the same meaning as’ and not ‘is’, since we can express these meanings in
various ways. For instance, ‘A only if A,’ has the same meaning as ‘if A,
then A,’ and A, but A,’ has the same meaning as ‘A, and A,’.) We refer to
this collection of sentences as an example of T'.

Nowlet Ay, . . . ,A,, and B be sentences. We say that ‘4;,. A,. . . . A,,.
Therefore B’ is a correct argument if there are formulae ¢,, . . . ,¢,, and y
such that {¢y, . . . ,0,}F v and there is an example of {¢y, . . . ,d,,¥} With

A, corresponding to ¢; and B to y. In our original examples in the previous
section, the first two correct arguments come from pAgkq and the third
from {pA—gq—rVs, pA-r}EqVs. The incorrect arguments can only (apart
from renaming the propositional variables) be examples of {pVq,q}, and
they are incorrect because pVgfq.

Exercise 11.7 Show that the following are tautologies.

(a) ¢—(6—9¢)

(b) (0—=¢)=>(T1¢—>710)

(©) A (GVy)=(0AD)V(8AY)
(d) —6->(6-9)

() —¢ed.

Exercise 11.8 Show that pVg—p/Aq and (p—q)—(p— L) are satisfiable
but not tautologies.

11.4 PROOF

In this section we consider the notion of proof or derivation. (These are two
words for the same notion. We will usually keep the word ‘proof’, though,
for the informal notion, and call the formal notion a derivation; but we may
say ‘provable’ rather than ‘derivable’.) This will turn out to be a finite
process of manipulation of sets of formulae which does not require any

Sec. 11.4] Proof 159

mention of truth. The connection with truth will be made later, and is, of
course, important.

There are three standard definitions of a proof (or derivation) of a
formula ¢ from a set of formulae I'. Although these give different definitions
for what a derivation is, it can be shown that the set of formulae derivable
from a given set is the same under all three definitions. They are the
axiomatic method, the method of natural deduction, and the tableau method.
The tableau method is very similar to the method of natural deduction, but is
particularly suited to automated theorem-proving. We shall not say any-
thing further about it.

The axiomatic method is very easy to define. We begin by specifying a set
A of logical axioms; this chosen set can be shown to be recursive. We then
define a derivation of ¢ from I to be a sequence ¢y, . . . ,$, of formulae
such that ¢,,is ¢ and, for all <n, either ¢, isin " oritisin A or there are i and
jless than r such that ¢; is ¢, — ¢,. This corresponds to the intuitive property
that we should be able to derive y from 6 and 6—y. This is a very
straightforward definition. It is also easy to check that the set of formulae
which can be derived from I'is r.e. if I is recursive. However, it turns out
that derivations by the axiomatic method are long and complicated (unless
one fudges the issue by including so many logical axioms that any derivation
one actually wants is obvious). Also there is no intuitive link between a
derivable formula and its derivation. We will therefore concentrate on
derivations by natural deduction.

The precise definition of a derivation by natural deduction is much more
complicated than for the axiomatic method (in the axiomatic method, most
of the complication goes into the choice of the set A of logical axioms). We
shall have to begin by defining trees. It is reasonably clear intuitively what a
tree is, and for much of the theory an intuitive idea is all we need. Some
examples are given in Fig. 4, which also explains the name ‘tree’.

X X Level 4 X
X X Level 3 X
Level 2 X
Level 1
Level 0

Fig. 4 — Some trees, whose leaves are indicated by X.

Geometrically a tree can be defined as a graph (that is, a set of vertices
and set of edges, with each edge having two associated vertices) such that
any two vertices are joined by exactly one path. Because our trees have a

160 Propositional logic [Ch. 11

starting point, it is convenient to add the following extra condition. To each
vertex there corresponds a number (the level of the vertex) such that the
levels of vertices joined by an edge differ by 1; there is exactly one vertex
(the root) of level 0, and any vertex of level n>0 is joined to exactly one
vertex of level n—1. A vertex is called a leaf if it is not joined to any vertex at
higher level. It can be shown that any graph satisfying this conditionis a tree.

The only trees we will be looking at have at most two immediate
successors to any vertex; this restriction will be made without further
comment. For such trees the following is a convenient formal definition,
because it also leads very straightforwardly to a G6del numbering of the set
of trees. For most purposes this definition can be ignored as long as the
reader has an intuitive understanding of what a tree is like.

Definition A tree is a non-empty finite set T of strings on {0,1} satisfying
the following conditions:

(1) no string in T begins with 0,
(2) if the string 0 is in T, then the string o is in T,
(3) if the string «1 is in T, then the string o0 is in 7.

We refer to the elements of T as vertices. (No confusion should occur
with the use of T'in the previous section. They are very different objects, and
we will not need to use both notations together.) If «is a vertex of T, we refer
to those of the strings 0 and «1 which are in T as immediate successors of «.
The string 1 is called the root of T. A string « with no immediate successor is
called a leaf of T.

The objects we shall need to consider are more than just trees. They will
consist of a tree, for each vertex a label which is a formula (distinct vertices
may have the same formula as label), and a division of the set of leaves into
two subsets, called marked and unmarked leaves. We shall indicate that a
leaf is marked by an overstrike on its label. We shall use the word ‘tree’ to
refer to these objects. Formally, we could define a tree to consist of a finite
non-empty set of triples («,¢,5), such that « is a string on {0,1}, ¢ is a
formula, and 3§ is either 0 or 1, subject to the conditions that the first
components form a tree in the previous sense, and that =1 only if the
corresponding « is a leaf. This would again lead easily to a G6del numbering
of the set of these trees. Again, we will mostly use informal pictures. In
particular, we make diagrams in which we will place the immediate succes-
sors of a vertex o above that vertex, directly above if o0 is the only
immediate successor of «, while if o has immediate successors o0 and o1, we
put o0 above and to the left of o, and 1 above and to the right of .

We shall need various ways of building new trees from old ones, and of

. T
representing these processes diagrammatically. Thus we shall write | to

¢

Sec. 11.4] Proof 161

10000 10001 10000 10001

1011
1000

100

1 1

Fig. 5 — The trees of Fig. 4 with the strings corresponding to their vertices.

T

. 0 .
denote a tree whose root is labelled ¢, — to denote a tree whose root is

¢

labelled ¢ and for which the root has one immediate successor such that the
T

T . . ! "
tree _ is left when the root is removed, and

0 ¢

where the root has two immediate successors and such that the two trees

and g:, remain when the root is removed. Finally, the notationg,
obtained from T by requiring all leaves labelled 0 (if any) to be marked, the
originally marked leaves remaining marked.

We now call certain trees derivations, the definition being inductive. As
with the definition of formulae, there are certain difficulties associated with
this inductive definition. We could be more precise and define the set of
derivations as the smallest set of trees satisfying certain conditions, showing
that there is a smallest such set. We can then show that a tree is a derivation
iff it is built up from smaller derivations according to the relevant rules.

for the tree with root ¢

9,

is the tree

Definition A tree with only one vertex is a derivation iff that vertex is
unmarked. A tree with more than one vertex is a derivation iff it is made
from smaller derivations by one of the six following rules.

The rules EA and IA for elimination and introduction of A.

162 Propositional logic [Ch. 11

T T

If T is a derivation then so are $Ay and PAy .
PNy o v

T/ TI TI TI
If both , and _, are derivations, then sois 9’ 9" .
e e elAeI/

The rules E— and I— for elimination and introduction of — .

T, TI TI TI
If both °, and are derivations, then sois ¢ ¢—vy.
¢ d—vy Ty

T £
If q} is a derivation, thensois T
v
o>y

Notice that in using the rule for introduction of — , we do not require
L4
b—v

any leaves to have the label ¢. In particular, is a derivation.

The rules L and RAA.

T
T . o . L
If | isa derivation, then so is g, for any ¢.
=4
T . o . T
If | isa derivation, then so is | » forany¢.
¢

Notice the difference between these two cases. In the second rule (which
is called RAA, because of its connection with proof by contradiction, also

Sec. 11.4] Proof 163

called Reductio Ad Absurdum) in the new derivation additional leaves are
marked, namely all those labelled with — ¢, whereasin the rule L, the new
derivation has the same marked leaves as the original one.

These ways of building new derivations from old ones are very similar to
the ways we construct informal proofs, which is why this approach is called
natural deduction. For instance, the rule for introduction of — corresponds
to the fact that if we want to prove ‘if P, then Q’ from given hypotheses, we
usually add P to the hypotheses and then try to prove Q. Similarly, the rule
RAA mimics the informal proof by contradiction.

The formula which is the label at the root of a derivation D is called the
conclusion of D, and the labels on the unmarked leaves are called the
hypotheses of D. We write ['|- ¢ (and say ¢ can be derived from I') if there is
a derivation with conclusion ¢ and hypotheses in I". In particular, we write
|- ¢, and call ¢ a theorem, if I'l- ¢ with I" empty. We also write I't# ¢ when
we do not have '}~ ¢.

¢ —¢
4

and

Since — ¢ is short for ¢— L, we have derivations

:'_431'_‘“1)' Applying the rule for introduction of — to the first of these,
and the rule RAA to the second, we find that |- — - ¢ and = - ¢} .

The rules for introduction and elimination of — show at once that
ru{¢} viff T - ¢—y. In the axiomatic approach, this is a deep
theorem.

In order to keep track of the stage at which various leaves become
marked, it is convenient to number each marking of a leaf and put the
corresponding number on the formula which requires this marking. These
numbers are not part of the formal definition, but are simply aids to

comprehension.

Lemmall.5 (i)IfT |- ¢andT CT' thenT' |- ¢. (i) IfT | dthenTo| ¢,
for some finite subset Ty of T. (iii) If T |- ¢ and A |- v, for every yinT then

Al 6.

Proof (i) is obvious, by definition. (ii) is also obvious, since a derivation is
finite.

Suppose the assumptions of (iii) hold. By (ii), we may assume I is finite,
and we can use induction on its size. If I is empty, then I C A, and the result
follows by (i). Suppose I' is {y;,..,¥n}. As T | ¢, we know that

{Y1, - - ¥a—1} F ¥»—¢. Inductively, A |- y,—¢. Since A |- y,, by
assumption, the rule for eliminating — tells us that A |- ¢.®

Lemmall.6 ()T U {¢}F vif TU {-y}}F =¢o.@)TU{=d}| v
ff T U {=~v} | ¢. ()T U {$p} | —viffT U {y} F -¢.

164 Propositional logic [Ch. 11

D
v~V is a
1

Proof (i) Let D be a derivation of y from I'U {¢}. Then
(1)

derivation, andso D is also a derivation; its conclusion is — ¢, and
¢ v
1
¢— L1 (1)
its hypotheses are obtained from the hypotheses of D by adding —y and
removing ¢. Thus it is a derivation of — ¢ from I' U { — y}. Conversely, let
D
-% ¢

L
Applying RAA to this, we get a derivation of y whose hypotheses are those
of D with ¢ added and — y removed, as required.

(ii) Let D be a derivation of y from 'U{—¢}. Then we have a

=4

derivation D of ¢ from I' U { —y}. The last line of this derivation

y vy
S
¢
comes by RAA. By symmetry, the converse is also true.
(iii) Finally, let D be a derivationof —yfromI' U {¢}. Then we have a

) 4

derivation Dof —¢ fromI" U {y}, the last line coming by introduc-
v vy
1
- ¢
tion of — . (It is frequently necessary to remember that — ¢ is p— L .)®

These two lemmas will be used frequently without specific mention. It is
often easier to use them rather than to construct derivations in detail.

I leave to the reader the proof that « |- « V Band B |- « V B, from which
itfollowsthatT" |- o V Bifeither |- aor " |- B. These will be referred to as
the rules for right-introduction of V.

Now suppose that I’ U {a} - pand TU {B} |- ¢. ThenT U { = d}}- ~«
andTU{-¢} |- -B. Hence TU { = ¢} |- —aA —B. Since «V B is defined
tobe — (—a A —B), we find that T U {aVB} |- . We call this the rule for
left-introduction of V. As a particular case, observe that - 0 V -9, from
which it follows that T |- ¢ ifboth ' U {8} |- ¢andT" U { — 0} | ¢. Also, if
¢ ythenOV |0V y.

We have seen that y |- ¢— . It follows from Lemma 11.6 that — y can
be derived from — (¢— y). Also, ¢ can be derived from — ($p— y) by the
derivation below.

is a derivation.

D be a derivation of = ¢ from I'U{ = y}. Then

Sec. 11.4] Proof

() =4 F (1)
2+
'
1) o>y = (9—v)
L
¢ (2)

165

Here we first use introduction of — to get the derivation of — y from — ¢,

and then apply RAA to get the derivation we need.
As a further example, we show that

- (0= (d—>v))— ((0— ¢)— (60— v)); we have already seen that this

formula is a tautology. The derivation is the following.

(1) f8—=4(2) (IWE—=17I(3)
9 ooy
v
0>y (1)
0—=9)—>(0—>vy) (2)
6= (>)= ((0-9)—(0-v)) (3)

As another example, we show that |- ((¢— y)— ¢)— ¢.
The derivation is

2 =¥ &)
L
——-\V .
1) ¢-v (9>v)—d
¢ - >4 (2)
p 2
(d—>v)—=d)— ¢

Here the next to last line comes by RAA. These are the first examples where

two leaves are marked at the same time.

While it is easy to check that the claimed derivations are indeed
derivations, the reader may well be wondering how such derivations can be
obtained. The following techniques can be used to construct derivations of ¢
from a finite set I (assuming ¢ can be derived from I'). It can be shown that,
with slight modifications, these techniques are certain to give a derivation if

it exists.

(1) If ¢ is d; A ¢, look for derivations of ¢, and ¢, from I', and apply the

rule for introduction of A.

166 Propositional logic [Ch. 11

(2) If ¢ is ¢, — ¢, look for a derivation of ¢, fromI" U {¢,}, and apply the
rule for introduction of — .

(3) IfI'is AU {o; A a,} look for a derivation of ¢ from AU {w;, o,}. This
can be modified to a derivation of ¢ from I', using the rule for
elimination of A.

(4) fTrisAU{oy, ®; — oy} look for a derivation of ¢ from AU {o, o},
and modify it using the rule for elimination of — .

(5) If T |- B look for a derivation of ¢ from I' U {B}. By Lemma 11.5(jii)
this can be modified to a derivation of ¢ from I.

(6) If I'is AU {«; = o,} we may combine the previous two possibilities.
That is, we can look for a derivation of «, from A. If we find one and we
also find a derivation of ¢ from AU {«;, «,} we can combine the two to
get a derivation of ¢ from I.

(7) If none of the above work we may try to use RAA, and then attempt to
apply the other techniques.

The following theorems will be proved for predicate logic in section 12.3.
The proof for propositional logic is a simplification of the later proofs,
simply omitting those aspects which are not relevant.

Theorem 11.7 The set of derivations is recursive.
Theorem 11.8 Let T be recursive. Then {; T |- ¢} isr.e.

Lemma 11.9 LetT ber.e. Then thereis arecursive setT' such thatT |- ¢ iff
Y

Theorem 11.10 Let T ber.e. Then {$;T |- ¢} isr.e.
By contrast, the following theorem is true only for propositional logic.

Theorem 11.11 Let T be finite. Then {¢; T |- &} is recursive.

Proof LetI'be{y,,...,y,},anddefinextobey, A...Ay,. Itiseasyto
check thatT' |- ¢iff x|~ ¢ iff - o — ¢. Since the map sending ¢ to a— ¢ is
recursive (by Church’s Thesis), it is enough to prove that the set of theorems
is recursive.

Now we know that the set of tautologies is recursive. By the Complete-
ness Theorem below, tautologies and theorems are the same, so the result
follows.m

In the following exercises, you may either construct detailed derivations
or use results such as Lemmas 11.5 and 11.6 to show that derivations exist.
You are recommended to look at both methods.

Sec. 11.5] Soundness 167

Exercise 11.9 Prove that « |- o V Band B | o V B. Deduce the rule for
right-introduction of V.

Exercise 11.10 Show that |- ((8— ¢)— (80— y))— (0— (d—v)).
Exercise 11.11 Show that |- (0 — (¢— v)) < ((0AP) - v).

Exercise 11.12 Show that { —0,0 V ¢} |- ¢ and that
- 0V (OAY) <OV) A®VY).

Exercise 11.13 Suppose that ¢, |- v, and y; |- ¢; for i =1,2. Show that
&1 A b2 i Ay, and that §,— b - v, — s

11.5 SOUNDNESS

Whenever we have notions of truth and proof (in the current situation the
relevant notions are tautology and theorem) it is natural to ask how these
concepts are related. We would like the notion of proof to be sound; that is,
anything that can be proved should be true. We would also like the notion to
be adequate; that is, anything that is true should be provable. It seems fairly
clear that an unsound theory would be extremely troublesome; however, an
inadequate theory might be worth considering if it had other advantages (for
instance, if it gave very simple proofs). Fortunately our notions are both
sound and adequate. This was proved by Gédel in 1930.

Theorem 11.12 (Goédel’s Completeness Theorem for propositional logic)
' ¢iffTE ¢.

This theorem divides into two parts The Soundness Theorem, which we
now prove, is fairly easy. The Adequacy Theorem is much harder; its proof
will take most of the next section.

Theorem 11.13 (Soundness Theorem) IfT |- ¢ then T = ¢.

Proof We shall show, by induction on the number of vertices, that if D is a
derivation, then the conclusion of D satisfies any valuation which satisfies all
the hypotheses of D. Write HypD for the set of hypotheses of D, and let v be
a valuation which satisfies HypD.

If D contains only one vertex, the result is obvious, as the conclusion and
hypotheses of the derivation D are the same.
D' D'
Ay
¢

Suppose D is ¢ or ¢ fv\ Y o As HypD' =HypD, we have, inducti-

168 Propositional logic [Ch. 11

vely, that v(dAy) =T (or v(yAd)=T), from which we get v =T, as
required.
D' D’
If Dis d:b " v, then HypD =HypD' U HypD". Inductively both v
v
and vy are T, and so v(pAy) = T, asrequired. A similar argument works for
elimination of — .
DI
Suppose Dis L Then HypD = HypD', so, inductively, there can be no

¢
v satisfying the hypotheses of D, as v L is never T. Thus the results holds by
default.
¥4

Suppose Dis D’ Then HypD’' CHypD U {¢}. So, by induction, if
.
oy
v¢ = T then also vy = T, since all the hypotheses of D’ are true. In this case,
we know that v(¢— y) = T. If v = F then, by definition, v(¢—>y) =T.
=4

IfDis D' ,then HypD’' CHypD U { —~¢}. No valuation can satisfy the
L

X
hypotheses of D'. Hence, if v satisfies HypD we must have v(- ¢) = F, and
so vo = T, as required.

11.6 ADEQUACY

In this section we show that our notion of derivation is adequate; that is
I'|- ¢if T' = ¢. Several other properties will have to be discussed first.

Lemma11.14 The following are equivalent: (i))T |- L, (ii)T |- ¢ forall d,
(iii) for some 6 we have bothT |- 0 and T |- —0.

Proof If (i) holds then (ii) holds by the rule L. If (ii) holds then (iii)
obviously holds. If (iii) holds the rule for elimination of — tells us that (i)
holds.m

A set I of formulae satisfying these conditions is called inconsistent. If I'
is not inconsistent it is called consistent.

If I is inconsistent some finite subset must be inconsistent (by Lemma
11.5), and conversely. Equivalently, I is consistent iff every finite subset of
I is consistent.

Sec. 11.6] Adequacy 169

Lemma 11.15 IfT U {&} is inconsistent, thenT |- = . IfT U { ¢} is
inconsistent, then T |- ¢.

Corollary If T U {—¢} and T U {d) are inconsistent, then T is
inconsistent.

Proof We get a derivation of —¢ from I' by applying the rule for
introduction of — to a derivation of L fromI" U {¢}. Similarly, we get a
derivation of ¢ from I" by applying the rule RAA to a derivation of L from
I' U { = ¢}. This proves the lemma. The corollary follows, using one of the
other equivalent definitions of inconsistency.®

If T |- ¢ then every member of I' U {¢} can be derived from I. It
follows by Lemma 11.5(iii), that if [|- ¢ and " U {¢} is inconsistent, so is
I.

A consistent set of formulae I' is maximal consistent if any I'’ strictly
containing I' is inconsistent. By the previous remark, if I' is maximal
consistent and ' |- ¢, then p isin T.

I" is complete if for every ¢ at least one of — ¢ or ¢pisinI". Plainly, if I"is
complete consistent then for every ¢ exactly one of and —¢pisinT.

Proposition 11.16 Let I be consistent. Then I is maximal consistent iff it is
complete.

Proof Suppose I' is maximal consistent, and that ¢ is not in I'. Then
I" U {¢}isinconsistent. Hence '}~ — ¢,andso — ¢ isinT. This shows that
I" is complete.

Suppose I' is complete consistent, and let I'' strictly contain I". Take ¢ in
I'"—T.Then —¢isinI". As both ¢ and — ¢ are in I'’, I’ is inconsistent.
Hence I' is maximal consistent.®

Theorem 11.17 Let I be consistent. Then there is a maximal consistent set T’
withT CTI'.

Proof There are only countably many formulae. Let them be ¢, ¢y,
Let I, be I". Define I',, inductivelyby I',, ., =T, U {,} if this is consistent,
andIl,,,=T, U {—¢,} otherwise. LetI"" be U I,,.

Inductively, every I',, is consistent. For I'y is consistent, and if I',, is
consistent at least one of I',, U {¢,} andI',, U { = &, } is consistent, by the
corollary to Lemma 11.15. By our definition, if I',, U {¢,,} is consistent, this
setisI,,,, whileif ', U {¢,} is inconsistent, thenT, ,,isT,, U {=¢,},
which is then consistent.

Suppose I'" were inconsistent. Then some finite subset of I'" would be

170 Propositional logic [Ch. 11

inconsistent, and this finite subset would be in I',, for some n. This would
make I, inconsistent. Hence I'’ is consistent.
By construction I'” is complete, so it is maximal consistent.®

Theorem 11.18 A set I' of formulae is consistent iff it satisfies some
valuation.

Proof IfT satisfies v, by Soundness, L cannot be derived fromI',asv.l = F.
Thus T is consistent.

Conversely, let I" be consistent. Enlarging it if necessary, by Theorem 17
we may assume that I" is maximal consistent. Take the unique valuation v
such that vp, = T iff p,eI". We now show, inductively, that a formula ¢ is in
I'iff v¢ = T. This holds for 1,as vl =F and L ¢TI, because I is consistent.
It holds for all p, by definition. .

Suppose this property holds for ¢ and y. First, suppose that v(¢pAy) = T.
Then v$ = T= vy, and ¢ and y are in T, inductively. Hence I' |- ¢ A y. As
I' is maximal consistent, ¢ A vy is in I'. Conversely, suppose ¢ A yisinT.
ThenT |- ¢ andT |- y. AsT is maximal consistent, ¢ and y are in I". Hence
vp and vy are T, and so v(p A y)=T.

Suppose v(¢— y) = T. Then either ve = For vy = T. In the first case, ¢
isnotinT". AsT iscomplete, — ¢ willbeinT. Since = ¢ |- ¢ — v, as before
¢ — ywillbeinT. Similarly, asy |- ¢ — vy, if vy=Tthen$p — yisinT.
Conversely, suppose ¢ — v is in I'. If ¢ is not in I', then, inductively,
vé=F,andsov(p—>y)=T.If ¢pisinT, thenT |- y. As before, this shows
that y is in I' and so, inductively, vy = T, and so v(p—> y) =T.8

Theorem 11.19 (Adequacy Theorem for Propositional Logic) IfT = ¢ then
Tk 6.

Proof Suppose ¢ cannot be derived from I'. Then we know that
I' U { — ¢} is consistent. Hence there is a valuation v which satisfies — ¢ and
all the members of I'. As v(—¢)=T we have vd = F. By definition this
means that we do not have ' = ¢.

Exercise 11.14 Show that I is maximal consistent iff it satisfies exactly one
valuation.

11.7 EQUIVALENCE

The results of this section will only be used in the corresponding section of
the next chapter and in Chapter 14.

Definition The formulae ¢ and ¢’ are called equivalent if = ¢ <> ¢'. This
holds iff v¢p =v¢' for any valuation v, which shows that we do have an
equivalence relation.

Sec. 11.7] Equivalence 171

Let ¢ be equivalent to ¢', and let y be equivalent to y’. It is easy to check
that = ¢, d Ay, ¢ V vy, d— v, and ¢ « y are equivalent, respectively, to
—¢L O AY, VY, ¢ > v, and ¢’ oy

Also = —¢ is equivalent to ¢, and ¢ —» y to —~¢ V y and to
—1(¢/\1y). Further we have the following rules, known as the associative,
commutative, and distributive laws. 6 A (¢ A y) and 6 V (¢ V y) are
equivalentto (0 A o) Ayand(0V ¢) Vy,d Ayand $ V yare equivalent to
yAdbandy V ¢,and (B A ¢) V yand (6 V ¢) A vy are equivalent to
OVy)A(dVwy)and (6 Avy)V (¢ A vy). By the Completeness Theorem, if
two formulae are equivalent each can be derived from the other. It is not
difficult to give directly derivations of each of the formulae above from the
corresponding formula which is equivalent to it. This is sometimes
convenient.

Definition A formula is said to be in disjunctive normal form if it is
¢,V ...V ¢, for some formulae ¢,, each of which is a conjunction of
formulae ¢,; where s runs from 1 to », for some #,, and finally each ¢,, is
either L or a propositional variable p, or the negation of one of these.

Notice that we do not bother to bracket the disjunctions (or the conjunc-
tions), since, by the associative law, all bracketings are equivalent.

If L occurs in ¢, we know that ¢, is equivalent to L . In this case we
obtain an equivalent formula by omitting ¢, unless n=1, when ¢ is
equivalentto L.If — L occurs in ¢,, we obtain an equivalent formula by
omitting it unless n, = 1; in this case, ¢,is = L and ¢ is equivalentto — L ,
and so is also equivalent to p; V —p;. We can also ensure that each
propositional variable occurs at most once (whether negated or not) in each
¢,. For if p occurs twice or — p occurs twice we obtain an equivalent formula
by omitting the second occurrence. If both p and —p occur in ¢, then ¢, may
be replaced by the equivalent formula L (which can be omitted unless
n=1).

Proposition 11.20 Any formula is equivalent to one in disjunctive normal
form.

Proof Let «be equivalent to a formula ¢ in disjunctive normal form. Then
—wis equivalentto =, A. .. A —¢,, and each — ¢, is equivalent to the
disjunction of the corresponding — ¢,,. By the distributive laws, we find that
we may change the order of the conjunctions and disjunctions to get — «
equivalent to a disjunction of conjunctions of the — ¢,,. Each of these is the
negation or the double negation of L or some p, and the double negation of
a formula is equivalent to the formula itself. Thus — « is equivalent to a
formula in disjunctive normal form.

Plainly, o V B is equivalent to a formula in disjunctive normal form if
both o and B are. As « — B and w/AP are equivalent to —« V B and
—(—a V —P), respectively, both « — B and o A B will be equivalent to
formulae in disjunctive normal form, and the result follows by induction.®

172 Propositional logic [Ch. 11

It is very easy to check whether or not a formula in disjunctive normal
form is satisfiable. (This does not provide a simpler method than truth-tables
for determining whether or not an arbitrary formula is satisfiable. The
difficulty just gets moved to constructing the disjunctive normal form). Let ¢
be in disjunctive normal form. Then ¢ is satisfiable iff some ¢, is satisfiable.
And ¢, is satisfiable iff the corresponding ¢, are simultaneously satisfiable.
Since each ¢, is (unless ¢ is just L) either p,or — p;for some i, these can be
simultaneously satisfied unless both p; and — p; both occur in ¢, for some i.

There is an alternative proof of Proposition 11.20, which is also interest-
ing. Let V,, denote the set of all partial valuations defined on those formulae
whose only propositional variables are p, for k < n. Thus V, can be
regarded as the set of functions from {pg, . . . ,p,} to {T,F}. Any such
formula ¢ defines a function from V, to {T,F}, by sending v to v¢. Two
formulae ¢ and vy are plainly equivalent iff they define the same function.
Hence the previous result follows from the next one.

Proposition 11.21 To any function f from V ,to {T,F} there is a formula ¢ in
disjunctive normal form such that fv=v¢ forallvinV,.

Proof Suppose this is true for n —1, and let f be a function from V,, to
{T,F}. Define two functions g; and g, from V,,_; to {T,F} as follows. Let w
be in V,_;. Then define g, and g, by gyw=fv;, and g,w=fv,, where
Vi =wpr=vop, for k < n,andvp,=T, vp,=F. Let ¢, and ¢, be the
formulae corresponding to g, and g, by the inductive hypothesis. Let ¢ be
V(6; A p,) vV (¥;A—p,), where ¢, is V6, and ¢, is Vi;. Then ¢ is in
disjunctive normal form. Let v be in ¥, and let w be the restriction of v to
V,-,. Then, with the above notation, if vp,= T then vis v, and fvr=g,w=
we, = v¢,. Since vp, = T, we have v(¢,/\—1p,) = F, and then v¢ = v¢,. So
Jfv=v¢ in this case. Similarly, we find fv=v¢$ when vp,=F.

The induction starts when n = 0. In this case we can choose ¢, and ¢, to
be either L or — L, and with the right choice we will still have fv = v¢ for
all v (there are only two possibilities for v in this case.)®

11.8 SUBSTITUTION

Let o be a formula and let ® = {¢,0,, . . .} be a sequence of formulae. We
denote by «[®] the result of substituting ¢, for p, in « for all n. It is
intuitively clear what this means and that the result is a formula. A precise
definition is, as usual, by induction. We define L [®]tobe L and p,[®] to
be ¢,. We then define (« A B)[®] and (« — B)[P] to be «[®] A B[®] and
o[®]— B[D], respectively.

An inductive proof now shows that o[®] is a formula for all . The
following lemma is immediate, by induction.

Lemma 11.22 Let .« be a formula, ® a sequence of formulae, and v a

Sec. 11.8] Substitution 173

valuation. Then vo[®] = wa, where w is the valuation such that wp,, = vo,, for
all n.

Lemma 11.23 (i) Let o and B be equivalent formulae, and let ® be a
sequence of formulae. Then o[®] is equivalent to B[D].

(if) Let o be a formula, and let ® and Y be sequences of formulae such that
&, is equivalent to v, for all n. Then o ®) is equivalent to of'P].

Proof Let v be any valuation, and let w be the valuation such that
wp,, = v¢,, for all n.

(i) By the previous lemma, we have va[®] = wa = wp (since o and B are
equivalent), and wf = vB[®], as required.

(ii) Asbefore, we have va[®] = wa. Since ¢,, is equivalent to y,, for all n,
we have also that wp, = v,,, and hence va[] = wa. Hence va[@] = va[¥],
as required.®

With @ as before, and I a set of formulae, we define I'[®] be be {y[®]; all
y in I'}. Lemma 11.22 shows at once that if I'= « then I'[®] E of®]. In
particular, o[®] is a tautology if « is a tautology.

If D is a derivation we let D[®] be the tree obtained from D by replacing
each label « at a vertex by the corresponding of®]. It is easy to check,
inductively, that D[®] is also a derivation. It follows (without using the
Completeness Theorem) that if I' |- « then [[®@] |- o[®).

Both these properties have in effect been used earlier (without specific
mention). For instance, the comment that we only need a truth-table of eight
lines to show that (8 — (¢ — vy)) — ((6 = ¢) — (0 — v)) is a tautology

amounts to showing that ((po — (p; = p2)) = ((Po = p1) = (Po = po)))is
a tautology and then substituting.

12

Predicate logic

In this chapter we look at predicate logic, which adds to the connectives of
propositional logic the quantifiers ‘for all’ and ‘for some’. This adds
significantly to the complexity of the theory, especially in the definitions.
However, many results hold both for propositional and for predicate logic;
where the proofs for predicate logic are not significantly different from the
earlier ones they will be omitted.

12.1 LANGUAGES OF FIRST-ORDER PREDICATE LOGIC

A language L of first-order predicate logic (the words ‘first-order’ will
usually be omitted) is a set consisting of the following elements (no element
can be of more than one type).

(1) some elements (possibly none) called constant symbols,

(2) some elements (possibly none) called function symbols. To each func-
tion symbol f there is an associated positive integer called the arity of f,

(3) some elements (at least one) called predicate symbols. To each predi-
cate symbol P there is an associated positive integer called the arity of P,

(4) countably many symbols xg, x1, ... called variables,

(5) the logical symbols A, —, and L,

(6) the universal quantifier V,

(7) the parentheses (and).

Notice that there are many languages of predicate logic, depending on
what elements we take in (1), (2), and (3). The choice of these will depend
on what objects we want to talk about. Most of our results apply to all
languages, but there are some deeper aspects where different languages
have significantly different properties (for instance, the decidability results
of the next chapter).

Sec. 12.1] Languages of first-order predicate logic 175

There are variations possible on what symbols are chosen in (5) and (6).
One might wish to include the existential quantifier 3 or some of the symbols
-, V, and <. We will regard these as auxiliary symbols, which will be
defined later in terms of the given symbols.

For convenience we often use x, y, and z as variables, rather than the
strict notation given in (4).

If a function symbol or predicate symbol has arity n, we usually refer to it
as an n-ary symbol. We also refer to unary, binary, or ternary symbols if the
arity is 1, 2, or 3. Most languages used in practice have a binary predicate
symbol called equality, which plays a special role. We will include this at a
later stage. If there is such a symbol, it may be the only predicate symbol.

Certain strings on L are called terms or formulae. These are the strings
we are interested in; intuitively, terms are the things we can talk about, and
formulae are what we can say about them. As with formulae of propositional
logic, we begin with an informal look, in which the final condition is too
vague to work with properly. Thus we begin by considering the set of terms
to be given by

(i) the constant symbols and the variables are terms,
(ii) if fis an n-ary function symbol for some n and ¢, ..., t, are terms then
ft1.t,is a term,
(iii) no string is a term unless (i) and (ii) require it to be a term.

In order to make this precise we make the following definition. As
before, to show that there is a smallest such set we show that the intersection
of all sets satisfying the conditions (1) and (2) below is itself a set satisfying
(1) and (2). It must then be the smallest such set.

Definition The set of terms is the smallest set such that

(1) the constant symbols and the variables are in the set,
(2) for every n and every n-ary function symbol f, if ¢, ..., #, are in the set
thensoisft, ... t,.

A term is called closed if it does not involve any variables.

Symbols such as s and ¢ (possibly with subscripts) will always stand for
terms.

We can then see that a string of length >1 is a term iff it can be written as
ft1 ... t,, where fis an n-ary function symbol (for some n) and t,, ..., t, are
terms. We have the following, which is proved as in Theorem 11.1.

Theorem 12.1 (Principle of induction for terms) Let S be a property of
strings which is true for all constant symbols and for all variables. Suppose S is
true for ft, ... t,, where f is an n-ary function symbol, whenever it is true for
each of ty, ..., t,. Then S is true for all terms.

176 Predicate logic [Ch. 12

Definition A string is an atomic formula iff it is L oris P, ... ¢, for some n-
ary predicate symbol P and some terms ¢, ..., ,.

Definition The set of formulae is the smallest set of strings such that

(1) any atomic formula is in the set,
(2) if ¢ and y are in the set then (pAvy), (b—v), and Vx ¢, where x is any
variable, are in the set.

Symbols such as 0, ¢, and y (possibly subscripted) will always stand for
formulae; after this section (when we no longer have to look at arbitrary
strings) any small Greek letter will stand for a formula and any capital Greek
letter for a set of formulae.

As before, we can show that there is a smallest such set, and we can also
show that a string containing A, —, or V is a formula iff it can be written as
(¢ A w), (b — v), or Vxd, respectively, where ¢ is a formula and so is y
(when it occurs) — which must be shorter than the original string, of course
— and x is any variable. Again, we have induction for formulae.

Theorem 12.2 (Principle of induction for formulae of predicate logic) Let S
be a property of strings which holds for all atomic formulae. Suppose that S
holds for (bAv), (d—V), and for Vx ¢, for any variable x, whenever it holds
for ¢ and . Then S holds for all formulae.

If we wish to discuss questions of recursiveness it is essential that our
language L is countable; this assumption will be taken for granted when such
topics are mentioned. In practice we usually have only finitely many
constant, function, and predicate symbols. If this happens we can obtain a
bijection from L to N sending x, to n+r for some fixed r, the remaining
symbols (constant, function, and predicate symbols, logical symbols, quan-
tifier and parentheses) being sentto 0, ..., r—1. If there are countably many
constant symbols, but only finitely many function and predicate symbols, we
could map x, to 2n+r and the constant symbol c, to 2n+1+r. If there are
countably many function or predicate symbols, the situation is rather more
complicated, as we have to allow for countably many symbols of each arity;
however, we could (for instance) map the ith function symbol of arity » onto
4J(n,i)+r. For all countable languages L we have in this way a Godel
numbering of L, which leads to a Godel numbering of the strings on L. It is
this Godel numbering that is used to refer to certain sets as recursive.
Readers are advised, for convenience, to consider only languages with
finitely many constant, function, and predicate symbols; the general case is
messier in detail, but essentially the same.

The set of terms is recursive. For, given any string not containing
function symbols, we can plainly tell whether or not it is a term. If the string
o contains function symbols it is not a term unless it begins with a function
symbol. Suppose o begins with a function symbol f whose arity is n. Then we
can find all ways of writing « as fo, ... «,, where each «; is a string. For

Sec. 12.1] Languages of first-order predicate logic 177

each such way we can check inductively whether or not «y, . . ., ®, are terms.
Then « will be a term iff there is a way of writing « as fw, ... «, with each o;
being a term.

It is possible to form the parsing trees for terms in a way similar to the
parsing trees for formulae of propositional logic, but here there can be n
vertices following a given vertex, not just 1 or 2. Further, the definition of
weight in Lemma 12.3 and the proof of that lemma show that «,; can be
identified as the smallest string of weight 1 such that fo, is an initial segment
of «, and then «, is the smallest segment of weight 1 such that fo,«, is an
initial segment of «, and so on. As with formulae of propositional logic, we
can in one construction determine whether or not « is a term and find its
parsing tree if it is a term.

The set of atomic formulae is recursive. For if a string « other than L is
an atomic formula it must begin with a predicate symbol. If it begins with a
n-ary predicate symbol P it is an atomic formula iff it can be written as
Po, ... o, for some terms «, ..., «,. Since we can tell whether or not a
string is a term, we can tell whether or not « can be written in the required
form.

The set of all formulae is recursive. A string not involving A, —, or Vis a
formula iff it is an atomic formula. A string involving one of A, —, and Vis a
formula iff it can be built from smaller strings in certain ways (this is a
property which we can check) and if these smaller strings are themselves
formulae (which can be checked inductively).

We can construct a parsing tree for formulae, and in one construction
determine whether or not a string is a formula and find its parsing tree if itis a
formula. The parsing tree of a formula has a kind of hybrid nature. At first it
is constructed in a similar way to the parsing tree of a formula of proposi-
tional logic. This procedure continues until there are no occurrences of —,
A, or V. After this, the atomic formulae give rise to terms, and we must
continue using the parsing trees of these terms. This process is not very
convenient. Readers may feel that this argument, even allowing for the
standard appeal to Church’s Thesis, is too vague to be convincing. We
therefore give a more precise proof that the set of all formulae is recursive,
assuming that the set of all atomic formulae is recursive.

We begin by defining three functions F, F_,, and F, from N*to N. If m
and n are the Godel numbers of the strings « and B we define F(m,n) and
F_ (m,n) to be the G6del numbers of (¢AB) and («— B), respectively. If m
is the G6del number of « and n is arbitrary we define Fy(m,n) to be the
Godel number of Vx,«. in all other cases we define the values of the
functions to be m + n + 1. It is then clear that the value of each function on
(m,n) is greater than max(m,n). It is also clear, by Church’s Thesis, that
these functions are recursive.

The definition of a formula tells us that n is the Godel number of a
formula iff either it is the Godel number of an atomic formula or it is either
F,(r,s) or F_(r,s) where r and s (which must be less than n) are Gddel
numbers of formulae or it is Fy(r,s) where r is the Godel number of a
formula (again r and s are less than n). We have discussed exactly this
situation (but using only one function in place of the two functions F, and

178 Predicate logic [Ch. 12

F_)) as an example on course-of-values recursion. That example was given
largely for its application here. The same techniques as in that example can
be used to give a formal proof that the set of all formulae is recursive
assuming that the set of atomic formulae is recursive.

If there are only finitely many function symbols a similar approach, using
one function from N” to N for each n-ary function symbol, gives a formal
proof that the set of terms is recursive. It is then easy, assuming that there
are only finitely many predicate symbols, to show that the set of atomic
formulae is recursive. A

If there are countably many function symbols the situation is trickier. It is
not enough to define one function for each function symbol. Instead, it is
necessary to define one function from N to N such that the Godel number (as
constructed in Chapter 8) of the finite sequence (ng, 1y, . . ., nx) maps to the
Godel number of fu; . .. oy when ngis the Godel number of a k-ary function
symbol f and n; is the Godel number of a string o;. The details will be
omitted, as they are messy and not very illuminating, and the finite case is all
that we need. The proof above is the only one we shall give in detail. Other
results will be justified by an apeal to Church’s Thesis. Full proofs can be
given along the above lines.

Most results about terms and formulae are proved by induction. In
proving a result for formulae, the start of the induction is the case of an
atomic formula. Sometimes the result for atomic formulae is obvious. More
usually, one has to find a proof for this case. The typical way of doing this is
to obtain, inductively, a result for terms related to the result we want for
formulae, and to obtain the result for atomic formulae from the result for
terms. We shall see several examples of this later.

As in propositional logic, we will want to define by induction various
functions (or properties) of terms and formulae. In order to ensure that
there are no problems with such definitions, we need the Unique Reading
Lemmas below.

Lemma12.3 A proper initial segment of aterm is not a term. A proper initial
segment of a formula is not a formula.

Proof We begin by associating with each symbol of L an integer, called the
weight of the symbol. For any constant symbol ¢ and any variable x, we
define wtc and wtx to be 1. For any n-ary function symbol f and any n-ary
predicate symbol P, we define wtf and wtP to be 1—n. We define wt) and
wt L to be 1, and wt (, wtV, wtA, and wt— are all —1. We define the weight
of a string to be the sum of the weights of the elements of the string.

Any term has weight 1. This is proved by induction. By definition, any
constant symbol or variable has weight 1. Also, if f is an n-ary function
symbol and t,, ..., #, have weight 1, then the weight of ft, ... ¢, is 1—n+1+
... +1, with n entries being 1, and so this weight is 1, as needed.

Any proper initial segment of a term has weight less than 1. This is true
for constant symbols and variables, because they do not have any proper
initial segments. It is easy to see that the proper initial segments of ft, ... t,

Sec. 12.1] Languages of first-order predicate logic 179

aref,ft; ... t,forr<m,andft, ... t,u, where u is a proper initial segment of
t,+1 and r<n. Using the first part, the result follows by induction.

Having proved these results on terms, we see, in the same way, that any
atomic formula has weight 1, while any proper initial segment of an atomic
formula has weight less than 1.

The weight of (p—y) and of (pAy) is —1+wtd+(—1)+wty+(—1), while
the weight of Vx ¢ is —1+1+wtd. It follows by induction that every formula
has weight 1. Another inductive proof now shows that any proper initial
segment of a formula has weight less than 1. The lemma follows.®

Lemma 12.4 (Unique Reading Lemma for Terms) Lett be a term. Thentis
of exactly one of the follwing forms.

(1) a constant symbol,
(2) avariable,
(3) ft1 ... t,, where f is an n-ary function symbol and t,, ..., t, are terms.

In this case f, n, and each of t,, ..., t, are determined by t.

Proof By definition any term is of one of these three types. It cannot be of
two of these types, since a term of type (3) begins with a function symbol,
while terms of types (1) and (2) do not.

Let ¢ be a term of type (3). Then f must be its first symbol, and » is the
arity of f. Suppose we can write tas fs; . .. s,, where each s; is a term. Suppose
that ¢; coincides with s; for all i<r. We show ¢, is the same as s,, proving the
result by induction. Plainly ¢, is an initial segment of the string obtained from
t by deleting its initial segment ft; ... t,_;, and s, is an initial segment of the
string obtained from ¢ by deleting its initial segment fs; ... s,—;. By
hypothesis, the two deleted segments are the same, and so ¢, and s, are both
initial segments of the same string. Hence one of t, and s, is an initial segment
of the other. By the previous lemma, neither can be a proper initial segment
of the other, and so they are the same.®

Lemma 12.5 (Unique Reading Lemma for Formulae) Any formula ¢ is of
exactly one of the following forms.

(1) L.

(2) Pt; ... t,, where P is an n-ary predicate symbol and each t; is a term. In
this case P, n, and each t; are determined by ¢.

(3) Vxv, for some variable x and formula y which are determined by ¢.

(4) (91/Ady) for some formulae ¢, and &, which are uniquely determined by

¢.
(5) (d1—=b,) for some formulae &, and b, which are uniquely determined by
¢.

Proof By definition every formula is of one of these forms. Plainly ¢ cannot
be of form (1) and of another form. Since formulae of form (2) begin with a

180 Predicate logic [Ch. 12

predicate symbol, of form (3) begin with V, and of forms (4) and (5) begin
with (, a formula of form (2) or of form (3) cannot be of any other form.

Uniqueness in form (2) follows the same proof as for the previous
lemma. Uniqueness in form (3) is obvious, since x must be the second
symbol and vy is obtained from ¢ by deleting the first two symbols.

The proof that a formula cannot be both of forms (4) and (5), and that the
expression is unique, will be omitted, since it is exactly the same as the proof
inLemma 11.3.m

The reason we need parentheses in formulae but not in terms is that the
connectives A and — are placed between the formulae, whereas the
function symbols are placed before their corresponding block of terms. For
the same reason, we can write Vx¢ without parentheses. If we used the
notations A¢y and — ¢y no parentheses would be needed. Similarly, no
parentheses would be needed if we placed these connectives and all function
symbols at the end of the relevant strings. This latter notation is often used in
programming, and is called Reverse Polish notation.

We use the same rules of abbreviation by omitting parentheses as for
propositional logic. Notice that Vx¢p—y abbreviates (Vxd—y), while
Vx(¢—v) must be written in that form.

We can now make some definitions by induction.

Definition The subformulae of the formula ¢ are given by: if ¢ is atomic,
then ¢ is the only subformula of ¢; if ¢ is either (¢p;Ad,) or (¢—,) then the
subformulae of ¢ are ¢ and all subformulae of either ¢, or ¢,; if ¢ is Vxy
then the subformulae of ¢ are ¢ and all subformulae of y.

Definition Every occurrence of a variable in a formula is either free or
bound (but not both). This is given inductively by: if ¢ is atomic, every
occurrence of any variable is free; if ¢ is either (¢, Ady) or (¢;—¢,) then an
occurrence of x in ¢ is free (or bound) if the corresponding occurrence of x in
¢d; or ¢, is free (or bound); every occurrence of x in Vxy is bound; an
occurrence of x in Yy is free (or bound) if the corresponding occurrence in
v is free (or bound).

A sentence is a formula in which no variable occurs free.

There are two uses of the symbol x in informal language. If we say ‘x>2’
we are referring to some definite x. This statement does not mean the same
as ‘y>2’. However, ‘for all x, x>=0’ does not refer to any specific x, and it
has the same meaning as ‘for all y, y? =0’. These correspond to the free and
bound occurrences, respectively, of a variable in a formula of the formal
language.

As an example, take a language with two unary predicate symbols P and
Q and one binary predicate symbol R. Let ¢ be (VxPxA(Rxy—Qx)). Thenx
occurs four times, the first two occurrences being bound and the last two
being free. Also, ¢ is (d;/A,), where ¢, is VxPx and ¢, is (Rxy—Qx). The
third and fourth occurrences of x in ¢ correspond to the first and second
occurrences in ¢s.

Sec. 12.1] Languages of first-order predicate logic 181

We can plainly tell, inductively, whether or not an occurrence of a
variable in a formula is free. It follows that the set of sentences is recursive. It
appears at first sight that we need to determine for every n whether or not the
variable x,, occurrs free in ¢, which would cause trouble. However x,, can
only occur at allin ¢ if n is at most the G6del number of ¢. Thus we only have
a finite number of variables to check, and this can be done.

We might wonder whether this result means ‘The set of sentences is a
recursive subset of the set of all strings’ or whether it means ‘The set of
sentences is a recursive subset of the set of all formulae’. However Proposi-
tion 8.2 shows that these two statements are equivalent.

Let ¢t be a term and x a variable. We want to define the result of
substituting ¢ for x (we may also say that x is replaced by ¢) in the formula ¢,
which we shall denote by ¢(#/x). Intuitively, we simply replace each free
occurrence of x by ¢ to get the new string (but bound occurrences are not
affected). Formally, this will be done by induction, but first we must define
by induction the result s(¢/x) of substituting ¢ for x in the term s. In these
expressions the parentheses are simply punctuation marks, and are not to be
regarded as symbols of the language.

If s is a constant symbol or a variable other than x we define s(#/x) to be s,
while x(t/x) istobe t. If sis fs; ... s, we define s(¢/x) tobe ft; .. . t,,, Where t; is
si(tx).

If ¢ is Ps; ... s, we define ¢(#/x) to be Pt ... t,, where each ¢; is si(t/x),
while L (#/x) is just L. If d(¢t/x) is y; for i=1,2, and ¢ is either (¢;Ad,) or
(d1—¢2) we define ¢(#/x) to be (y;Ayy) or (y1—>y,). If ¢ is Vx0 we define
¢(#/x) to be ¢ (since in this case all occurrences of x are bound), while if ¢ is
Vy0 we define ¢(#/x) to be Vyy where y is 0(¢/x). We see easily that this map
is recursive, as a function of the three variables ¢, x, and ¢.

More generally we could simultaneously substitute for a number of
variables. In the case when we are substituting constant symbols this can be
done by substituting successively. In general the two results are different.
For instance, if #; contains x,, the result of simultaneously substituting ¢, for
x; and ¢, for x, will not be the same as first substituting #; for x; and then
substituting ¢, for x; in the result.

While substitutions can always be made, when we come to consider
meanings in the next section, we find that certain substitutions turn out to
have the wrong meanings. An example of a similar situation from analysis is
the following. We know that

2

Jx cosxydy = sinx. |

If we substitute any expression not involving y for x we get a true result. If,
however, we substitute y for x on both sides of this equation the result is not
true.

We define inductively what is meant by saying that ¢ is free for x in ¢. If ¢
is atomic, then ¢ is free for x in ¢. If ¢ is either (¢p;Ad,) or (b;—¢,) then tis

182 Predicate logic [Ch. 12

free for x in ¢ iff ¢t is free for x in both of ¢; and ¢,. If ¢ is Vxy then ¢ is free for
x in ¢. Finally, if ¢ is Vyy, then ¢ is free for x in ¢ if ¢ is free for x in y and
either y does not occur in ¢ or x does not occur free in y. It can be shown that ¢
is free for x in ¢ iff there is no subformula of ¢ of form Vy 8 with y occurring
in t and some occurrence of x in 8 being free in ¢. The set of triples (¢, x, ¢)
for which ¢t is free for x in ¢ is easily seen to be recursive.

12.2 TRUTH

Up to now formulae have simply been regarded as strings, with no meaning
attached to them. We now see how to give them meanings, and to talk of
their truth or falsehood.

Definition An L-structure A consists of a non-empty set A, an element c,
of A corresponding to each constant symbol c, a function f5: A"—A for each
n-ary function symbol f, and a subset P, of A" (or, equivalently, a property
or relation of n variables) to each n-ary predicate symbol P.

This definition suggests that we start with a language L and then look at
the relevant structures. This is the most convenient definition, but, in
practice, the situation is reversed. We start with a class of objects we wish to
consider, and then take an appropriate language. For instance, if we wish to
talk about groups, our language might have a binary predicate symbol
corresponding to equality, a constant symbol, and one unary and one binary
function symbol (so that we can talk about the identity element, and about
the inverse function and multiplication); alternatively, we might omit the
constant symbol and the unary function symbol. Similarly, if we wanted to
talk about ordered sets, we might require our language to contain two binary
predicate symbols (one for equality, and the other for the order relation).
Note that if we took the above-mentioned language L for group theory, then
L-structures are not groups. They are simply objects of which we can
meaningfully ask whether or not they are groups (whereas it would not make
sense to ask of a set with an order relation whether it was a group).

Let A be an L-structure. Let ¢ be a closed term of L. We define
inductively the corresponding element ¢, of A. We have already defined c,.
Ift=ft; ... t,, we define ¢4 to be fa(t1a, - - - taa)- -

We wish to define a function v, from the set of sentences of L to the two-
element set {T, F}. To do this, we have to define a larger language L(A), and
define v, on the set of sentences of L(A). For convenience, we shall usually
omit the subscript A of v, and will only use it when we need to look at several
L-structures.

Let A be any L-structure. We define the language L(A) to be obtained
from L by adding a new constant symbol a for each ain A. (In the remaining
chapters, bold type will be used for certain constant symbols or closed terms
of a language, and not to denote tuples of elements.) Plainly, A can be
regarded as an L(A)-structure, by defining a, to be a itself. As before, vre
have an element ¢, of A to each closed term ¢ of L(A).

Sec. 12.2] Truth 183

We now define the function v (more strictly, v,) on all sentences of L(A)
by induction. If ¢ is the atomic sentence Pt ... t,, we define v¢ to be T iff
(t1a, - - - tya) is in the set P,, while v L is F. When ¢ and y are sentences, we
define, as in propositional logic, v(dAy) to be T iff both v and vy are T,
and v(¢—v) to be Fiff vé=Tand vy=F. If the sentence ¢ is Vxy, we define
v to be T iff vy (a/x)=T for every a in A. (Notice that y must have no free
variables other than x, since ¢ is a sentence. Hence y(a/x) is a sentence;
also, this sentence is a sentence of L(A) even if y is a sentence of L. It is for
this reason that we must work in L(A) rather than L.) We say the sentence ¢
is true or valid in A if v4¢=T; otherwise ¢ is false or invalid in A.

Plainly the definition of vVx¢ fits in with the intuitive meaning of V as
‘for all’.

The name ‘first-order predicate logic’ can now be explained. It is
‘predicate logic’ because it concerns properties or predicates of elements. It
is ‘first-order’ because our use of V lets us talk about all elements of a
structure, but we are not permitted to talk about all subsets or all properties.
For instance, induction in the way we normally use it is not a first-order
concept, although there is a closely related first-order concept.

We define the auxiliary symbols —, V, and <> as in propositional logic.
The auxiliary symbol 3 is defined by requiring 3x ¢ to be an abbreviation for
—Vx—¢. It then follows that va3x¢=T iff vad(a/x)=T for some a in A,
which fits in with the intended meaning of 3 as ‘for some’.

We write A E ¢ if ¢pistruein A, and | ¢ if A | ¢ for all A. We call ¢ valid
if £ ¢. If [is a set of sentences of L, we call A a model of I" if every member
of I'is true in A. Finally, we write I" | ¢ (and call ¢ a semantic consequence
of I') if ¢ is true in every model of I'. In particular, this last-notion makes
sense when I is empty; in this case it coincides with the previous meaning of
F ¢

Observe that the notion of [is essentially infinite. That is, | ¢ holds iff
A E ¢ holds of every L-structure A, and there are infinitely many structures
to consider. Even if we look at only one structure A, and a formula ¢
containing quantifiers, to find out whether or not A | ¢ we will have to look
at all elements of A, and there may be infinitely many of them. Thus, at this
point in our work, we have no reason to expect that {¢; ¢ is valid} is even
listable. This does hold, and will be shown much later. If we are concerned
only with finite structures, the position is simpler.

Theorem 12.6 The set of finite sets I of sentences such that " has a finite
model is r.e.

Proof If T has a finite model it has a model defined on the set of natural
numbers <n for some n. For any finite set can be mapped bijectively to such
aset, and we can plainly translate the constants, functions, and predicates of
the original structure to make this set an L-structure which will also be a
model of I'. There can only be finitely many L-structures for a given n. (At
least, if L does not have infinitely many constant, function, or predicate
symbols. But I is finite, and only the symbols occurring in some formula of I"

184 Predicate logic [Ch. 12

can be relevant, so we may forget about any others.) We simply look at all
these structures for each n, checking each member of I to see whether or not
itis true in the given structure. As the structure is finite, we have only a finite
amount of checking to do for each element of the finite set I'. Thus we can
look through all finite structures until, if ever, we find amodel of I". In other
words, the set of all such finite sets is the domain of a computable function
(assigning to each finite I', for instance, the smallest n for which I has a
model with n+1 elements), and sois r.e.®

We need to extend matters of truth and falsehood to arbitrary formulae,
which may contain free variables, not just sentences. To do this, we have to
assign a member of A to each variable. We define an interpretation i in A to
be a function i from the set of free variables into A. To each formula ¢ of
L(A), we obtain a sentence i¢p of L(A) by simultaneously replacing in ¢ the
free occurrences of the variables x, for all r by the corresponding constant
symbols a,, where a, is ix,. In particular, if ¢ is a sentence, and so has no free
variables, i¢ is just ¢. Combining this with the previously defined v,, we
have a function v,i from the set of all formulae into { T, F}. If this function
sends ¢ to T we say ¢ is true under the interpretation i. Notice that if i and j
are interpretations such that ix=jx for every variable x which occurs free in
¢, then ip and j coincide.

Lemma 12.7 viVxd=T iff vio=T for every interpretation j such that jy=iy
for every variable y other than x.

Proof Let 0 be the formula obtained from ¢ by replacing the free occur-
rences of the variables x, other than x by the corresponding a,. Then iVx¢ is
Vx0, by definition. So viVx¢=T iff vO(b/x)=T for all b in A. Let j be the
interpretation with jx=>b and jy=iy for all other variables y. Then j¢ is just
0(b/x). The result follows.m

We now write A [¢ if ¢ is true under every intepretationin A, and & ¢ if
A £ ¢ for every L-structure A. We write I | ¢, where I is a set of formulae,
if all those interpretations (into all structures) which make all the members
of I true also make ¢ true. When ¢ is a sentence, and I a set of sentences,
these definitions coincide with the previous ones. However, it should be
noted that I' £ ¢ does not mean that A [¢ for every A such that A [y for
every y in I'. The latter would require us only to look at those A such that
vaiy=T for all interpretations i into A, whereas we want to look at those
particular i (and corresponding A) for which vpiy=T.

We will leave to a later section further properties of interpretations.

Exercise 12.1 Show that the following hold.

(a) Vx¢ F Ixo.
(b) 3xVyo E VyIxé.
(c) VxVyd E VyVxod.

Sec. 12.3] Proof 185
(d) Ix(d—>Vxd).
Exercise 12.2 Is it true that Vy3x¢ E IxVyd? Justify your answer.

Exercise 12.3 Let x be a variable which does not occur free in ¢. Show that
E ¢ < Vx¢ and that £ ¢ « Ix¢.

Exercise12.4 Show that} Vx (¢ A y) <> Vxd A Vxy. Show that when x is a
variable which does not occur free in ¢ we also have £ Vx (¢ Vy) © ¢VVxy.

Exercise 12.5 Show that Vx¢o VVxyEVx(dVy). Is it true that
Vx (¢ Vy)EVxdV Vxy?

12.3 PROOF

Just as in propositional logic, we wish to define derivations, and we will use
the method of natural deduction rather than the axiomatic to tableau
methods. As before, the definition is inductive.

Definition A tree with only one vertex is a derivation iff that vertex is
unmarked. A tree with more than one vertex is a derivation iff it is made
from smaller derivations by one of the eight following rules.

The rules EA and IA for elimination and introduction of A.

T T

If T is a derivation then so are /Ay and Ay
Py T

T, \ Tl Tl
If both o and g e derivations, then so is 8’ 0"

0'A8"

The rules E—» and I— for elimination and introduction of — .

, , TI TI
If both T and T are derivations, then so is ¢ ¢—v
¢ ¢y e
v
¥
If T is a derivation, then so is T
v ¢—

186 Predicate logic [Ch. 12

The rules L and RAA.
T

T . . .
If N is a derivation, then so is L , for any ¢.

T
If N is a derivation, then so is , for any ¢.

©
|+ N]X

The rules EV and IV for elimination and introduction of V.
T
is a derivation, then so is Vx¢ , provided that ¢ is free for x in ¢.

o (tlx)

Notice that x is free for x in any formula, so, as a special case of this, if
T

a derivation, so is Vx¢

¢

L3V

T is
Vx¢

T
T. — . . .
If | is a derivation, thensois ¢ , provided x does not occur free in any

¢ Vxé

label of an unmarked leaf of T.

The first six rules are the ones already used in propositional logic.
Consequently all the derivations obtained in the previous chapter are also
derivations of predicate logic. In particular, Lemmas 11.5 and 11.6 hold.

Notice that the rules of ¥ follow the usual way of working with ‘for all x’.
For instance, the rule for introduction of V corresponds to an informal
argument where we prove a result for x, and then say that x was arbitrary and
so the result holds for all x.

As previously, the formula which is the label at the root of a derivation D
is called the conclusion of D, and the labels on the unmarked leaves are
called the hypotheses of D. We write I' }- ¢ (and say ¢ can be derived from I')
if there is a derivation with conclusion ¢ and hypotheses in I'. When I" is
empty, we write |- ¢ instead of I'}- ¢, and we call ¢ a theorem.

We can now show that Vx¢ | Vx v if ¢ |- y. For (by elimination of V with
t being x) we know that Vx¢ |- ¢. So Lemma 11.5(iii) tells us that Vx¢ | .
As x does not occur free in Vx¢ we can apply introduction of V to this
derivation to get a derivation of Vxy from Vx¢.

As particular cases of the last result, we see that Vx¢ | Vx——¢ and
Vx——d¢ |- Vx¢. It follows that =Vx——¢ |- =Vx¢ and -Vxd | -Vx——¢.
By definition of 3, these say that 3x—¢ |- —Vx¢$ and =Vx¢ | 3x—¢. The
fact that Vx—¢ |- —=3x¢ and —=3x¢ | Vx — ¢ comes from the propositional
rules only, using the definition of 3.

Sec. 12.3] Proof 187

There is a rule for left-introduction of 3, which is obtained by a similar
method to the rule for left-introduction of V in propositional logic. It states
that if TU{¢} }- v then TU{3xd} |- v provided that x does not occur free in
T'U{y}. The rule for right-introduction of 3 comes from the rule for
elimination of V. It says that if ¢ is free for x in ¢ then I'}- x ¢ provided that
T ¢ (tx).

For suppose TU{¢} |- v, and that x does not occur free in TU{y}. Then
FU{—y}} —¢. By the rule for introduction of V, we then have
T'U{-y} | Vx—¢. From this we get, as needed, TU{-Vx—¢} |- y.

We now look at some examples using the rules for V.

F Vx(dAy) © VxdAVxy. Known properties of <>, of A, and of — tell us

that we need only show that Vx(¢Ay) | VxdpAVxy and
VxdAVxy | Vx(dpAy). The derivations are as follows.

Vx(dAvy) Vx(dAy) and VxpAVxy VxoAVxy
LT LA Vxo Vxy
L] v ¢ v

Vxd Vxy OAY
VxdAVxy Vx(oAy)

Now suppose x does not occur free in ¢. We will show that

F Vx(dVy) < ¢VVxy. As before, we need only show that

Vx(dVy) | ¢VVxy and that ¢VVxy | Vx(édVy). For the first of these, we
begin by observing that {—d,dVy} | v (this is Exercise 11.12). Since
Vx(¢Vy) | ¢V, we have {—¢,Vx(¢Vy)} | v. Because x does not occur
free in either Vx(¢pVy) (by definition) or in ¢ (given), we find that
{—¢,Yx(¢Vy)} | Vxy. The result now follows by propositional reasoning.
For the other property, note first that we need only show that ¢ | Vx(¢Vy)
and that Vxy } Vx(¢pVy), by the rule for left-introduction of V. Now
o ¢V, and as x does not occur free in ¢ we obtain ¢ | Vx(pVy).
Similarly, as y F$Vy and Vxy |- y we see first Vxy |- $Vy and then that
Vxy |- Vx(¢Vy). Because of the complicated use of — in the definition of V,
it is usually easier to use various rules and known derivations rather than
directly constructing the derivation we need.

Theorem 12.8 The set of derivations is recursive.

Proof A tree with one vertex is a derivation iff the vertex is unmarked. A
tree with more than one vertex is a derivation iff it is built from smaller trees
by one of eight methods, and these smaller trees are derivations. Thus we
can tell inductively whether or not a tree is a derivation, provided we can tell
whether or not it is built from smaller trees by one of the eight ways.

We can plainly tell whether or not a tree is of one of the forms

T T T T T T T
Ay yAd 6 y L o ooV

A v

188 Predicate logic [Ch. 12

¥ =é
If we ask whether or not T is of one of the forms i or L we find
=y b

that T" is not uniquely given. This is because T" is obtained from T by
removing the root, and then removing the marks on some leaves. We can
choose which, if any, of the leaves labelled ¢ (or —¢, in the RAA case) to
remove the marks from. However, this provides finitely many possibilities
for T, all of which we can find, and we can then continue the checking for
each of these possibilities.
TI
We can check whether or not Tis ¢ . We can find the labels on the
Vxd
unmarked leaves of T", and we can then see whether or not x occurs free in
any of these labels.
Tl
The final case we have to check is whether or not T is Vx¢ , where we

v

require that y is ¢(#/x) for some term ¢ free for x in ¢. We can certainly check
whether or not T is of this form for some ¢ and y which do not satisfy the
extra condition. The problem is that we appear to have infinitely many ¢ to
consider. However, we can first check whether or not x occurs free in ¢. If
not, then ¢(#/x) always coincides with ¢, so in this case we have only to check
whether or not y is ¢. If x does occur free in ¢, it is easy to see that the string ¢
occurs as a segment of ¢(#/x). So, in this case, we look at all segments of v,
see which of them are terms, and for each such term ¢ decide whether or not ¢
is free for x in ¢ and vy is ¢(#/x). Thus we have reduced the apparently
infinitely many terms ¢ we need to look at to only finitely many.m

Theorem 12.9 Let T be recursive. Then both {¢; ¢ is a formula with T |- ¢}
and {$; ¢ is a sentence with T |- ¢} arer.e.

Proof AsT isrecursive, the set of trees whose unmarked leaves have labels
in I" is recursive. Since the set of derivations is recursive, the intersection of
these two sets, which is the set of derivations with hypotheses in T, is
recursive.

The function sending each tree to the label on its root is recursive (by
Church’s Thesis, of course). So the image by this function of the set of
derivations with hypotheses in I" is r.e. But this set is, by definition, exactly
{¢;T ¢}

As the set of all sentences is recursive, its intersection with {¢; '} ¢}
will also be r.e., as required.m

Lemma12.10 LetT ber.e. Thenthereis arecursive setT’ such that T} ¢ iff

Sec. 12.4] Soundness 189

"} ¢. Further T' may be chosen to consist of sentences if T consists of
sentences.

Theorem 12.11 Let T be r.e. Then both {$; ¢ is a formula with T |- ¢} and
{d; ¢ is a sentence with T |- ¢} are r.e.

Proof The theorem follows at once from the lemma and the previous
theorem.

When referring to an r.e. set of formulae, we are implicitly considering a
bijection from N to the set of all formulae. So we shall assume the formulae
are given as ¢g, ¢y,

If T is empty, it is itself recursive. Hence we may assume there is a
recursive function fsuch that I"is {¢y,; alln}. Let "' consist of all formulae of
form ¢z, A(¢,— ¢,). Now we can tell for a given formula whether or not it is
¢,,A\(d,— ,,) for some m and n. If not, it is not in I'’. If so, it is in I’ iff
m = fn, which can be checked. Hence I' is recursive.

Now ¢,A(d,— ¢,) - 9y, obviously. Also, |- ¢,—¢,, and so
O - & A(d,— &,). So by Lemma 11.5(iii), T' - ¢ iff ' |- 4.

If T consists only of sentences, we similarly take I'"’ to be the set of all
65,/\(c,— ©,), where 6, G, ... are all the sentences.®

Observe that, both in propositional logic and in predicate logic, the set of
theorems is r.e. In propositional logic, the set of tautologies was easily seen
to be recursive; in contrast, in predicate logic, it is not even obvious that the
set of valid formulae is r.e. The Completeness Theorem tells us that in
propositional logic theorems and tautologies are the same, and so the set of
theorems is recursive. In predicate logic the Completeness Theorem
(proved later) tells us that theorems and valid formulae are the same, and so
the set of valid formulae is r.e. In predicate logic the set of theorems need
not be recursive. As we shall see in the next chapter, for some languages the
set of theorems is recursive, while for others it is not.

Exercise 12.6 Show that |- 3x(¢Vy) <> Ix¢$pVIxy. Show also that if x
does not occur free in ¢ then |- Ix(dpAy) © ¢ A xy and that

F (0—=Vxy) © Vx(d—y).
Exercise 12.7 Show that VxVy¢ |- VyVx¢ and that IxVy¢ | Vy3xd.

Exercise 12.8 Show that if ¢ |- v then 3x¢ |- Ixy.

12.4 SOUNDNESS

Just as in propositional logic, we can ask about soundness and adequacy, and
we find that the corresponding results hold for predicate logic. The proof of
soundness is only slightly more difficult than in the propositional case, but
the proof of adequacy is considerably harder. As before, the Completeness

190 Predicate logic [Ch. 12

Theorem, which we now state, divides into two parts, the Soundness
Theorem and the Adequacy Theorem.

Theorem 12.12 (Godel’s Completeness Theorem) T |- ¢ iff T £ ¢.

We now prove the Soundness Theorem for Predicate Logic. The Ade-
quacy Theorem will be proved in the next section.

Theorem 12.13 (Soundness Theorem) IfT |- ¢ then T E ¢.

Proof We shall show, by induction on the number of vertices, thatif D is a
derivation, then the conclusion of D is true under any interpretation which
makes all the hypotheses of D true. Write HypD for the set of hypotheses of
D, and let i be an interpretation under which all members of HypD are true.

The start of the induction and the six propositional cases follow exactly as
in section 11.5, except that we must replace v by vi.

DI

IfDis %, we need, by Lemma 12.7, to show that ¢ is true under any
interpretation j for which jy = iy for all variables other than x. However, x
does not occur free in any formula y of HypD (=HypD'). Hence the
hypotheses of D' are also true under j, so that ¢ is true under j.

DI
Vx
o(tx)
must show that Vx¢ = ¢(#/x) when ¢ is free for x in ¢. This will take the
remainder of the section. ®

We are left with the case when D is To deal with this case, we

Before looking at this, we observe that ¢(#/x) need not be a semantic
consequence of Vx ¢ when ¢is not free for x in ¢. This is why this concept has
to be defined, and required in the rule for elimination of V. As an example,
let L have no constant and function symbols, and have exactly one predicate
symbol P whose arity is2. Then N is an L-structure with (m,n) in Py iff m<n.
Plainly Vx ¢ is true in N if ¢ is JyPxy. But ¢p(y/x) is not true in N.

Similarly Vx ¢ is not a semantic consequence of ¢ if x occurs free in ¢. Let
L be as before, and let ¢ be Pxy. Then ¢ is true in the interpretation which
sends x and y to 0 and 1, respectively. But Vx¢ is plainly not true in this
interpretation.

Let i be any interpretation. We can extend i to a map, which we still
denote by i, from the set of all terms of L(A) into A. We need only define i on
a constant symbol c to be the corresponding element c, of A, and extend
inductively.

Now let ¢ be a term free for x in the formula ¢, and let y be ¢(#/x).
Suppose Vx¢ is true under i. In particular, ¢ will be true under the
interpretation j for which jx=it and jy=iy for all other y. Hence, to show that
Vx¢ E v, it is enough to prove the lemma below.

Sec. 12.5] Adequacy 191

Lemma 12.14 Let t be free for x in &, and let y be ¢(t/x). Let i be an
interpretation, and let j be the interpretation with jx=it, jy=iy for all other y.
Then viy=vj.

Proof As usual, by induction. If ¢ is either ¢;Ad, or d;—¢,, the result is
plainly true for ¢ if it is true for ¢, and ¢,. If x does not occur free in ¢,
we find that ¢ is ¢ and j¢ is i¢, as required.

Let ¢ be VyO, where x occurs free in 6. Then ¥ is Vya, where a is
0(t/x). Since tis free for x in ¢, y cannot occur in t and ¢ is free for x in 6. Now
viy=T iff vi'a=T for every interpretation i’ such that i'z=iz for all z
different from y. Inductively, vi'a=vj'0, where j'z=i'z if z is not x and
j'x=i't. Since i’ is i except on y, and t does not contain y, i’ t=it. Thus ' differs
from jonly ony, andj’ can be any such interpretation. Sovj¢=Tiff vj'0=T
for all suchj’, and we have viy=vj¢, as required. To start our induction, we
need some auxiliary results, which will also be useful later.

Let i be an interpretation, and let ¢ be an atomic formula P, .. . t,. Then
¢ is true under i iff (14, . . . , S,a) is in Pa, Where s, comes from ¢, by replacing
each variable x by the corresponding constant symbol a, where a=ix. The
usual induction shows that s, is just it,. So ¢ is true under i iff (it,, .. . , it,) is
in PA.

Let y be ¢(#/x), with ¢ asin the previous paragraph. Then y is true under
Uiff (iuq, . . ., iu,) isin P, where u, is t,(t/x), while ¢ is true under jiff (jz,, . . .,
jtn) is in P4. So the result we want for atomic formulae holds provided
iu,=jt,. As usual, this is proved by a straightforward induction.m

Lemma 12.15 Lett be free for x in ¢. Let i be an interpretation, and let it=a.
Then vid(tix)=vid(alx).

Proof By definition, we also have ia=a. Thus, by the previous lemma, both
sides equal vj¢, where jx=a, and jy=iy for all other y.m

Lemma 12,16 Let A be an L-structure, and suppose there is a set S of closed
terms of L such that every element of A is t5 for sometin S. Then viVx =T iff
vid(tix)=T foralltin S.

Proof By definition, viVx$=T iff vi¢(a/x)=T for all a in A. By the
previous lemma and our assumption on S, this holds iff vi¢(#/x)=T for all tin
S, as required.m

Exercise 12.9 Complete the details in the proof of Lemma 12.14.

12.5 ADEQUACY

In this section we show that our notion of derivation is adequate; that is,
T'} ¢ if T ¢. Several other properties will have to be discussed first.

192 Predicate logic [Ch. 12

12.5.1 Consistency

As in propositional logic we call a set I' of formulae of predicate logic
inconsistent if T |- L. A consistent set of formulae I is maximal consistent if
any I'’ strictly containing I is inconsistent. I" is complete if for every ¢ either
¢ or —¢ is in I'. We are often interested only in sentences, rather than
formulae in general. We therefore call a consistent set £ of sentences
maximal consistent if any set £’ of sentences which strictly contains X is
inconsistent, and we call X complete if for every sentence ¢ either ¢ or - is
in . It follows that a set of sentences which is maximal consistent or
complete as a set of sentences is not maximal consistent or complete as a set
of formulae. This should not cause any difficulties. Most of our results are
true both for sets of formulae and for sets of sentences; the proofs for
sentences come from the proofs for formulae by just restricting attention to
sentences. All the results of section 11.6 preceding Theorem 11.17 hold for
predicate logic (whether for formulae or sentences) as well as for propositio-
nal logic, the details of the proofs being identical.

Theorem 12.17 Let I" be a consistent set (of formulae or sentences). Then
there is a maximal consistent set I'' (of formulae or sentences, respectively)
with I'CI''.

Proof If our language L is countable, the theorem is proved in exactly the
same way as Theorem 11.17.

Readers may wish to restrict attention to the countable case. For the
general case, a certain amount of familiarity with the Axiom of Choice or its
equivalents is needed. One method is to follow the above approach,
replacing finite induction by transfinite induction. Alternatively, we could
use Zorn’s Lemma to find a maximal consistent I'"” containing I". The best
proof is to use a result known as Tukey’s Lemma to get the result. Tukey’s
Lemma, which is equivalent to Zorn’s Lemma, says that for any property P
such that a set has P iff all its finite subset have P, then any set having P is
contained in a maximal set having P; Tukey’s Lemma applies at once to the
property of being consistent.®

12.5.2 Witnesses

Let ¢ be a formula, ¢ a constant symbol, and y a variable. Then ¢(y/c)
denotes the result of replacing each occurrence of cin ¢ by y. If T'is a tree,
T(ylc) is the tree obtained from T by replacing each label ¢ by the
corresponding ¢(y/c).

Lemma 12.18 If D is a derivation so is D(y/c) provided y does not occur in
D.

Proof In the usual induction, seven of the ways of building D from smaller
derivations immediately give D(y/c) as built in the same way from smaller
derivations. The difficult case is when D is built from D’ by eliminating V. To
deal with this case, take a formula ¢ and term ¢ free for x in ¢, and let y be

Sec. 12.5] Adequacy 193

¢(#/x). Let y be a variable not occurring in ¢ or ¢, and let 6 be ¢(y/c). We need
to prove that there is a term s free for x in 0 such that 8(s/x) is y(y/c).

It is clear that s should be #(y/c). The proof that this is as required is, as
ever, an induction.

We show first that if u is a term not involving y and v and w are the terms
u(t/x) and u(y/c) then v(y/c) is w(s/x). When uis a constant symbol other than
c or a variable other than x this is obvious (remembering that u cannot be y).
If uis c then vis c and w is y, and so w(s/x) is y, which is also v(y/c). If uis x
then vis tand w is x; in this case v(y/c) is f(y/c), whichis s, and w(s/x) is also s.
The inductive step is obvious.

It is now immediate that we have the result we want when the formula ¢
is atomic. It clearly follows inductively if ¢ is either (¢;Ady) or (¢1—2).

Now suppose that ¢ is Yza, where x occurs free in a. As ¢ is free for x in
¢, it follows that t cannot involve z, and so neither can s. Now 0 is Vzf3, where
Bis a(y/c). Hence s is free for x in 8. Also y is Vxy, where v is a(#/x). Hence
v(y/c) is the same as (s/x), because y(y/c) is B(s/x), inductively.

Finally, suppose x does not occur free in ¢. Then ¢ is ¢. Also x will not
occur free in 0, so, similarly, s is free for x in 6 and 6(s/x) is just 6. Again
we have y(y/c) being 6(s/x), completing the induction.m

Corollary Let ¢ be a constant symbol not occurring in T or ¢. If T |- ¢(c/x)
then T |- Vx¢.

Proof If D is the derivation, and y a variable other than x which does not
occur in D, we know that D(y/c) is a derivation of ¢(y/x) from the same
hypotheses as D. Since y does not occur in these hypotheses, we can
introduce V, and we find that "} Yy $(y/x). The corollary follows from the
next lemma.®

Lemma 12.19 Let y be a variable not occurring in ¢, and let y be ¢(y/x).
Then x is free for y in v, ¢ is y(x/y), and Vyy | Vxd and Vx ¢ | Vyy.

Proof Since y does not occur in ¢, it is certainly free for x in ¢. Hence
Vx| y. As y does not occur in Vx¢, this gives Vx| Vyy. A similar
argument shows that Vyy |- Vx ¢, once we have shown that x is free for y in y
and that ¢ is y(x/y). This requires the usual induction, which will be left as an
exercise.®

Let L' be a language containing L, and let ¢ be a formulaof L, and I" a
set of formulae of L. Every L'-structure is an L-structure (just forget about
the extra symbols), and every L-structure can be made into an L’-structure
(define the elements, functions, and subsets corresponding to the new
symbols arbitrarily). Hence I' E ¢ for LiffI' = ¢ for L'. From the Complete-
ness Theorem, it follows that T' |- ¢ for L iff ['|- ¢ for L’. We shall need to
prove a special case of this as a step in proving the Completeness Theorem.

194 Predicate logic [Ch. 12

Lemma 12.20 Let L' be a language containing L, such that L'— L consists
only of constant symbols. Let ¢ be a formula of L, and T a set of formulae of
L. ThenT} ¢ for Liff T} ¢ for L'.

Proof Plainly a derivation of ¢ from I' in L is also a derivation in L',
Conversely, any derivation in L’ which does not use any of the symbols of
L’'—L will be a derivation in L.

So it is enough to show that if there is a derivation D of ¢ from I'in L',
and D uses n+1 new symbols, then there is another derivation using only n
new symbols. Let ¢ be one of the new constant symbols which occurs in D,
and let y be a variable which does not occur in D. By the previous lemma
D(y/c) is a derivation, and it only uses n of the new symbols. Because ¢ and
I', being in L, do not involve c, the conclusion ¢(y/c) of D(y/c) is just ¢, and
similarly the hypotheses of D(y/c) are in I".m

A formula Ixp— ¢(c/x), where c is a constant symbol not occurringin ¢,
is called a Henkin formula (for 3x¢), and c is called a witness for Ix¢.

Lemma 12.21 Let T be consistent, and let ® be a set of Henkin formulae
such that each witness occurs in only one formula of TU®. Then TU® is
consistent.

Proof Suppose I'U® is inconsistent. Then there is a finite subset @, of ©
such that T'U®y is inconsistent. We show that if we remove one member
from @, the result is still inconsistent. Thus, by induction, I" will be
inconsistent.

So it is enough to show that I"is inconsistent assuming F'U{3xd— d(c/x)}
is inconsistent, where c is a constant symbol not occurring in T'U{¢}. As
TU{3x¢—d(c/x)} | L, we know that T'| —(3xp—d(c/x)). But we have
shown (immediately after Lemma 11.6) that —(a—B)} « and
—(o—B) | —B. Hence I'}- 3x$ and I' |- —d(c/x). Since ¢ does not occur in
or ¢, the corollary to Lemma 12.18 tells us that T'}- Vx—¢. As 3x¢ is, by
definition, —Vx—¢, we see that I is inconsistent.®

Lemma12.22 LetT bea consistent set (of formulae or sentences) of L. Then
there is a language L*, with LCL* and L*—L consisting only of constant
symbols, and a consistent set I'* (of formulae or sentences, respectively) such
that TCI'* and T'* contains a Henkin formula (sentence) for each formula
(sentence) Ax¢ of L+.

Proof First take a language L' containing L, such that L' — L consists only
of constant symbols c,, one for each pair (x, $) with ¢ aformulaof L. Let I’
be I'U{3xp—d(c.e/x)}. By the previous lemma, I'' is consistent.

This is not yet what we want, since I'' only contains Henkin formulae for
each 3x¢ with ¢ a formula of L, and we now have to look at all formulae of

Sec. 12.5] Adequacy 195

L'. We define, inductively, L° to be L, I'° to be T", and L"*!=(L")’, and
["*1=(I")'. Finally, we define L* and '+ to be UL" and UI™.

Plainly L+ satisfies the relevant conditions. For any formula ¢ of L*,
there is some integer » such that ¢ is a formula of L”. Then I"**!, and so I'*
also, contains a Henkin formula for 3x¢. If I'* were inconsistent, there
would be a finite inconsistent subset, which would be contained in I'” for
some n. Hence I'” would be inconsistent in L*, and hence, by Lemma 12.20,
would also be inconsistent in L”. But we know, inductively, that each I'" is
consistent.

If we are only interested in sentences, we can simply cut I'* down to the
set of sentences which it contains.®

12.5.3 Adequacy
Theorem 12.23 A set " of sentences is consistent iff it has a model.

Proof If I' has a model, by Soundness, L cannot be derived from I, as it is
not true in the model.

Let I" be consistent. Suppose we can find a language containing L and a
set of sentences of this language containing I which has a model. Then this
can be regarded as an L-structure (by ignoring the new symbols) and, as
such, is a model of I'. Hence, by Lemma 12.22 and Theorem 12.17 we may
assume that I" contains Henkin sentences for every sentence 3x¢, and that I"
is maximal consistent.

Let A be the set of all closed terms of L (note that A is not empty, since it
includes all the witnesses). We can define an L-structure A on A as follows.
For each constant symbol c, c, is just c itself. The function f, is given the
natural definition, namely, f(¢;, . .., %) isft; . . . t,,. Finally, P, consists of all
(t1, ..., t,) such that Pt,...t, is in I'. Plainly, for any closed term ¢, the
element ¢, of A is just .

We now show, inductively, that a sentence ¢ of L is in " iff vo=T
(where, as usual, v is short for v,). This holds for L , which cannot be in I
because I' is consistent. It holds for all other atomic sentences by the
definition of P, and the remark about ¢,.

Suppose this property holds for ¢ and y. Then it holds for ¢ Ay and for
¢—v, exactly as in Theorem 11.18.

Now let 0 be Vx¢. If O is in ', then ¢(¢/x) is in I for all closed terms ¢.
Thus, inductively, vo(#/x)=T for all closed terms ¢. By Lemma 12.16, this
tells us that v(a/x)=T for every element a of A. Hence v0=T.

Conversely, suppose 0 isnotin I". AsI"is complete, —0 will be in I". Now
we know that 1Vx¢3x—1¢. Hence Ix—1¢ is in I. Let ¢ be the witness to
dx—¢. By hypothesis, I' contains the Henkin sentence Ix—d——d(c/x).
Hence I' | —~¢(c/x), and so —¢(c/x) is in T. Its value is then T, by induction,
so vd(c/x)=F. This guarantees that vWx¢ is F, completing the inductive
proof.m

If we want to prove a similar result for formulae, a technical lemma is
needed.

196 Predicate logic [Ch. 12

Lemma 12.24 Let Y be any infinite set of variables. To any formula , there
is a formula y such that y comes from ¢ by replacing all the bound variables
by variables in Y, and such that | v and v |- ¢.

Proof ltiseasy to check thatif o, y,and y, |- ¢,forr=1,2, then each of
¢1/Ad, and y; Ay, can be derived from the other, and similarly for ¢, — ¢,
and y; — vy, (this was Exercise 11.13).

Suppose the result holds for ¢. Then ¢ |- v and y |- ¢, from which we
know that Vx¢ |- Vxy and Vxy }- Vx¢. Let y be a variable in Y and not in .
Let 0 be y(y/x). Then, by Lemma 12.19, Vxy |- Vy0 and Vy0} Vxy. Thus
Vy#0 is the relevant formula for Vx4, and the result follows by induction.

Theorem 12.25 Let I be a consistent set of formulae. Then there is an L-
structure A and an interpretation i in A under which all the members of T are
true.

Proof As before, we may assume I" contains Henkin formulae for all 3x¢,
and that I' is maximal consistent. We take A to consist of all terms (not just
the closed ones), and make the obvious definitions, such as requiring ix to be
x. The proof is almost as before, but there is one difficulty.

Suppose Vx¢ is in . We want to show that vi¢p(a/x)=T for all a in A.
Now a is just a term ¢ of L (but it is convenient to make distinctions in the
notation). We cannot claim that vi$(#/x) =T, because ¢t may not be free for x
in ¢. However, by the previous lemma, we can find y such that no variable in
t occurs bound in y, and with ¢ |- y. Then Vx¢ |- Vxy, so Vxy isin T. Since ¢
is free for x in y, we find that y(#/x) is in I'. As vy is obtained from ¢ by
changing the bound variables, it will contain the same number of A, —, and
V as ¢ does. So, in our inductive proof, we are entitled to assume that
viy(t/x)is T. Thus, by Lemma 12.15, viy(a/x)=T. Let j be the interpretation
with jx=a and jy=iy for all other y. Then vi$(a/x)=vj¢, and similarly for y.
Since y | ¢, we know that yE ¢, and hence T=vjy=vj¢d, so we obtain
vip(a/x)=T, as needed.®

Theorem 12.26 (Adequacy Theorem) If ' ¢ then T |- ¢. This holds both
for sentences and formulae.

Proof Suppose ¢ cannot be derived from I'. Then we know that TU{—¢} is
consistent. If we are dealing only with sentences, Theorem 12.23 tells us that
T'U{-¢} has a model, and this shows that we cannot have I [¢. If we are
dealing with formulae, Theorem 12.25 shows there is an interpretation i
under which —¢ and all the members of I are true. As ¢ is false under this
interpretation, by definition this means that we do not have T'[= ¢.m

Exercise 12.10 Complete the proof of Lemma 12.19. That is, given a
variable y not occurring in ¢, and defining y to be ¢(y/x), show that x is free
for y in y and that ¢ is y(x/y).

Sec. 12.6] Equality 197

Exercise 12.11 Give an example of a situation where y is ¢(y/x) with y
occurring in ¢ and such that ¢ is not y(x/y).

12.6 EQUALITY

Most objects that we wish to consider are sets, and so have the relation of
equality. The languages we use to talk about such objects should then have a
binary predicate symbol to correspond to this.

We define a language with equality to consist of a language L in the
previous sense together with a specified binary predicate symbol of L. We
call this symbol ‘equals’, and write it as =. Then = can mean either equality
in a set, or the predicate symbol; this should not lead to any confusion.

We shall need to define structures and derivations for languages with
equality, and to compare these with the previous notions. We will call a
language in which no binary predicate symbol has been specified a pure
language. Thus any language with equality can also be regarded as a pure
language.

Let L be a language with equality, and A an L-structure when L is
regarded as a pure language. To any binary predicate symbol of L there is a
corresponding subset of A2, and this subset can be regarded as a binary
relationon A. If the relation corresponding to = is the relation of equality on
A, we say A is a structure of L as language with equality.

We could define derivations for languages with equality by adding
further rules covering the use of =. But it is rather easier to use a hybrid
method involving axioms of equality. We shall write s=¢, where s and ¢ are
terms, instead of the more formal =st, to make easier reading.

Definition The axioms of equality are the following set E of sentences:

(1) Vx(x=x);

(2) VxVy(x=y—y=x);

3) VaVyVz(x =yAy =z x=2);

(4) for all n, to every n-ary function symbol f the sentence

Vxl e sz,,(xl =x,,+1/\ e /\x" =X2"—)fxl e Xy =fx,,+1 e xz,,)
(5) for all n, to every n-ary predicate symbol P the sentence

Vxy oo Xou(Xy =X A oo AX, =20, (Pxy o X, PXy g L X))

We now say that ' |- ¢ for L as language with equality if TUE |- ¢ for L
as pure language. Since every structure for L as language with equality is
plainly a model of E, the Soundness Theorem for languages with equality
follows at once from the Soundness Theorem for pure languages. We need a
lemma before we can prove the Adequacy Theorem (and hence the
Completeness Theorem).

198 Predicate logic [Ch. 12

Lemma 12.27 Let A and B be structures for a pure language. Let * be a map
from A onto B satisfying the following conditions:

1) co* =cg, for every constant symbol c,
A B y Y

) iffaay, ..., a,) =athen fg(a,*, ..., a,*) = a*, for every n-ary function
symbol f,

3) (ay*, ..., a,*)isin Pyiff (ay, ..., a,) is in P,, for every n-ary predicate
symbol P.

Then, for any sentence ¢, vod = vgd. More generally, let i be any interpre-
tation in A, and let i* be the interpretation in B obtained by following i with *.
Then, for any formula &, v,id = vgi*d.

Remark Suppose L happens to be a language with equality, and let A and
B be structures for the language with equality. Condition (3) applied to the
predicate symbol = tells us that a,* = a,* iff a, = a,. Thus * is one—one in
this case, as well as being onto. When this happens, we call * an
isomorphism.

Proof We can regard B as an L(A)-structure, defining ag to be a*.
Inductively, for any closed term ¢ of L(A), we have #,* = tg; more generally,
for any term ¢ of L(A), we have (if)* = i*t.

The last part of the proof of Lemma 12.14 tells us that vgiPt, . . . t,, = Tiff
{ity,...,it,} €P,. The corresponding property for i* and B, together with
condition (3), shows that the result holds when ¢ is atomic. The general case
follows inductively, using Lemma 12.16 to show that vgi*Vx¢p =T iff
vgi*d(a/x)=Tforallain A.m

Theorem 12.28 Let I" be a consistent set of sentences for a language with
equality. Then T has a model. More generally, if T is a consistant set of
formulae there is an interpretation under which all the members of T are true.

Proof Since I' U E is consistent for L as pure language, it has a model A.
Corresponding to the symbol = of L is a binary relation in A, which we
denote by =.

As A is a model of E, we see that for any a,, a,, and a; in A we have
a,=a,,ifa, =a,thena,=a,,andifa, =a,and a, =a; thena, =a;. Thus =
is an equivalence relation on A, and we let B be the set of equivalence
classes. For any constant symbol c, let cg be the equivalence class of c4.

Also, if a,=a,,, for r=1,...,n we know that f,a,...q, =
faGns1--- @, It follows that we can define fg by fg(b;, . ..,b,) = a*, where
a = fa(ay,...,a,) and a, is any element in the equivalence class of b,.

With the same notation, we define Pg to be the set of those (b, ...,b,)
such that (a,,...,a,)isin P,. Condition (5) of the axioms of equality and the
rest of the construction show that the conditions of the previous lemma hold,
and so give the result. The more general result that a consistent set of

Sec. 12.7] Compactness and the Lowenheim—Skolem theorems 199

formulae in a language with equality satisfies some interpretation can be
obtained similarly.m

The Adequacy Theorem for languages with equality follows from this, as
before.

We note some consequences of E. First, for any terms ¢,,...,t,,, the
formulat, = ¢, A ... At, = th,—>ft;...t, = ft,.\... 1, can be derived
from E, and there is a similar result for predicate symbols. This cannot be
derived directly from (4) of E by eliminating V, both because ¢, may not be
free for x, in the formula (4), and because, since we must work one step at a
time, we would run into trouble if, for instance, t, contained x,. Instead, we
first show that, for any m > 2n, we can derive from E the formula Vx,, , , ...

me+2n (xm+1 = Xm+n+1 /\ el > fxm+l s Xmen = fxm+n+l e xm+2n)'
This is obtained directly, by 2n eliminations of V followed by 2x introduc-
tions of V. If we take m such that the only variables occurringint,, . .., t,, are

x, for some k <m, a further 2n eliminations of V from this will give the result
we want.

Now let t be any term, and let ¢’ be obtained from ¢ by replacing, for some
m, each variable x, by the variable x,, . ,. Inductively we see that |- Vx, ...
Vx,,,(x; =x,, .4\ ... =>t=1") in the language with equality. For we need
only show that x; =x,,.,A ... |- t=¢". This is obvious if is a constant
symbol or a variable. Suppose tis ft, . . . t,. Inductively the hypotheses let us
derive t,=t,' for r=1,...,n, and the result follows from the previous
paragraph.

Finally, let ¢ be any formula, and let ¢’ be obtained from ¢ by replacing
simultaneously the free occurrences of x,, for k=1,...,m by x,, . .. If the
new variables do not occur in ¢, we have x, =x,, . /A ... |- d— ¢, and, as
usual, we may move the hypothesis to the right and then introduce V. This s,
as usual, proved inductively. The start of the induction follows from (5) of E
and the result just proved for terms.

Exercise 12.12 Fill in the details in the proof of Lemma 12.27.

Exercise 12.13 Prove the result stated in the last paragraph. Deduce that if
¢ is any formula and s and ¢ any terms free for x in ¢ then
s=t} &(s/x)—d(t/x). In particular, s=x |- d(s/x)— .

12.7 COMPACTNESS AND THE LOWENHEIM-SKOLEM
THEOREMS

This section will only be needed to prove, in the next chapter, that certain
theories are decidable. We shall consider only languages with equality. The
next theorem is very easy in our approach; it is sometimes proved before the
Adequacy Theorem, and used to obtain the latter.

Theorem 12.29 (Compactness Theorem) A set I” of sentences has a model iff
every finite subset of I has a model.

200 Predicate logic [Ch. 12

Proof We know that a set has a model iff it is consistent, and that a set is
consistent iff all its finite subsets are consistent. The result is immediate.m

Let A be any infinite cardinal number. For the next results, we need to
know that the union of countably many sets of cardinality A has cardinality A,
and that the set of strings on a set of cardinality A also has cardinality A.
When A is the cardinality of the natural numbers this is easy. It is also
straightforward when A is the cardinality of the real numbers; these two
cases suffice for the examples in the next chapter.

Theorem 12.30 (Downward Lowenheim-Skolem Theorem) Let L be a
language of cardinality A, and T a set of sentences of L. If " has a model it has
a model of cardinality at most \.

Proof Since I' has a model, it is consistent. Then we have explicitly
constructed, in the proofs of Theorems 12.25 and 12.28, a model for I', and
we show this model has cardinality at most A.

First observe that any language of cardinality A has at most (in fact,
exactly) A pairs (x,¢). Hence, if we add witnesses for all 3x¢, the new
language still has cardinality A.

It follows that, in the construction, all the languages L" will have
cardinality A, and hence so will L*. Now the L-structure constructed in the
proof of Theorem 12.25 as a model of T'UE regarding L as a pure language
has as its elements the closed terms of L*. There are at most (in fact, exactly)
A of these. Finally, the structure which is a model for I' when L is regarded as
a language with equality is a set of equivalence classes of this set. Hence its
cardinality is at most A.®

Theorem 12.31 (Upward Lowenheim-Skolem Theorem) Let L have cardi-
nality A. If I has arbitrarily large finite models it has an infinite model. If T has
an infinite model, it has models of any cardinality p=\.

Proof Suppose I' has arbitrarily large finite models. Enlarge L to a
language L' by adding countably many new constant symbols. Let A’ be the
set of sentences {—(c=c")} for all distinct new constant symbolscand c’. Itis
plain that any L’-model of T'UA’ is an infinite L-model of I'. Thus it is
enough to show that TUA’ has a model.

By compactness, it is enough to show that T'UA has a model, where A is
any finite subset of A’. Now A contains at most » constant symbols for some
integer n. Take an L-model of I" with at least n elements. Make this into an
L'-structure by requiring the elements of the structure corresponding to the
constant symbols occurring in A to be distinct, which is possible, and letting
the elements corresponding to the other constant symbols be arbitrary. This
is plainly a model of TUA.

Now supose we have a cardinal number u which is at least A. This time
enlarge L to L' by adding u new constant symbols. Then L' has cardinality

Sec. 12.8] Equivalence 201

. Let A’ be as before. Again let A be any finite subset of A’. The given
infinite L-model of I can be regarded as an L’-model of 'UA, as before.
Hence 'UA' has an L'-model.

By the previous theorem, 'UA’ has an L'-model of cardinality at most u.
Plainly any model of A’ has cardinality at least w, so this model has
cardinality exactly u, as required.®

12.8 EQUIVALENCE

The results of this section will only be used in Chapter 14. We return to
considering pure languages. The formulae ¢ and ¢’ are called equivalent if
E ¢<>¢’. This holds iff vidp=vi¢’ for any interpretation i; this shows that we
do have an equivalence relation.

The simple equivalences of the previous chapter also hold for predicate
logic. In addition, let ¢ be equivalent to ¢'. It is easy to check that Vx¢ and
dx¢ are equivalent, respectively, to Vx¢' and Ix¢’. Also Vx¢ is equivalent
to —3x—d.

The formulae Vx(¢Awy) and Ix(dpVy) are equivalent to VxpAVxy and
Ix¢pVIxy. We do not have any equivalence for Vx(¢Vy) and Ix(pAy) in
general. However, if x does not occur free in ¢, they are equivalent to
¢VVxy and pAIxy. These may be checked directly. Alternatively, we may
show that each formula can be derived from the corresponding one, and
then use Soundness.

Lemma 12.32 Let Y be any infinite set of variables. Then to any formula ¢
there is an equivalent formula y obtained from ¢ by replacing the distinct
bound variables in ¢ by distinct variables in Y.

Proof This follows immediately from Lemma 12.24, using Soundness.
Alternatively, it can be proved directly along the same lines.®

A formula is said to be in prenex normal form if it is Q1x;(y) . . . QnXi(n)®,
where each Q, is one of the quantifiers V and 3, the variables x;,) are
distinct, and ¢ contains no quantifiers.

Proposition 12.33 Every formula is equivalent to one in prenex normal
form.

Proof Any atomic formula is in prenex normal form. Suppose ¢ is
equivalent to y where vy is in prenex normal form. Let y be a variable not
occurring in y. Then Vx¢ is equivalent to Vxy, which in turn is equivalent to
Vyy(y/x), and the latter is in prenex normal form.

Suppose ¢ and y are equivalent to the formulae « and B which are in
prenex normal form. Replacing B by an equivalent formula according to the
previous lemma, we may assume that no variable which is bound in B occurs
in «. Making a similar replacement for «, we can also assume that no “-53.
variable which is bound in « occurs in B. Then ¢Ay is equivalent to @wAB.

5o

wa
=

202 Predicate logic [Ch. 12

Writing B as Oxy, where Q is either V or 3, we find that /AP is equivalent to
QOx(ax/Y), since x does not occur in «. Repeating this procedure as necess-
ary, we obtain a formula in prenex normal form equivalent to «/Ap, as
required.

Also M ¢ is equivalent to a’, where o is obtained from « by replacing
each V and 3 by 3 and V respectively, and then taking the negation of the
quantifier-free formula. Finally ¢—v, being equivalent to ~(¢ A —y) has an
equivalent prenex normal form, using the previous two cases.®

Let o be a formula of propositional logic, and let ® be a sequence of
formulae of predicate logic. Exactly as in the previous chapter, we can
define a formula of @] of predicate logic (notice that & must be a formula of
propositional logic, not a formula of predicate logic). Let i be any interpre-
tation, and let w be the valuation given by wp,=vi¢, for all n. As before, we
find that via[®]=ww, and the analogue of Lemma 11.23 holds, the proof
being almost identical to the previous one.

We now look at quantifier-free formulae. In predicate logic a formula
without quantifiers is said to be in disjunctive normal formifitis ¢,V ... V¢,
for some formulae ¢,, each of which is a conjunction of formulae ¢,, where s
runs from 1 to n, for some n,, and finally each ¢, is either atomic or the
negation of an atomic formula. Note that we do not bother to bracket the
disjunctions (or the conjunctions), since, by the associative law, all bracket-
ings are equivalent.

Proposition 12.34 Any formula without quantifiers is equivalent to one in
disjunctive normal form.

Proof 1t is easy to check by induction that any quantifier-free formula can
be written as o[®], where « is a formula of propositional logic and each ¢, in
® is atomic. Now « is equivalent to a formula B of propositional logic such
that f is in disjunctive normal form. Then «[®] is equivalent to p[®], and this
latter is in disjunctive normal form for predicate logic, because each ¢,, is
atomic.® :

13

Undecidability and Incompleteness

In the later sections of this chapter we prove various versions of Gddel’s
Incompleteness Theorem and the Undecidability of Number Theory (and of
Logic). In the first section we give some decidable theories.

13.1 SOME DECIDABLE THEORIES

A theory is a set I of sentences such that any sentence ¢ for which " |- cisin
I'. Let A be a structure; then the theory of A, written ThA, is {c; A = o}.
This is a theory, by the Soundness Theorem. The theory of the language L,
written ThL, is {o; |= o}; by completeness, this is also {c; - c}. More
generally, we could choose any set of L-structures, and the set of sentences
true in these structures would be a theory (for instance, group theory).

For any set A of sentences, the set of consequences of A, written C(A), is
{o; A |- o}; this is plainly a theory. We call A a set of axioms for [if [=
C(A). If T has arecursive set of axioms we say it is recursively axiomatisable.
By Theorem 12.9 and Lemma 12.10, this holds iff I'is r.e.

For the remainder of this section all languages considered will be
countable. If a theory is recursive, we shall usually call it a ‘decidable theory’
rather than saying ‘recursive theory’.

Proposition 13.1 Let L be a pure language with no constant or function
symbols whose only predicate symbols are finitely many unary symbols. Then
ThL is decidable.

Proof Let the predicate symbols be P, ..., P,. Let X be the set of all
k-tuples (B, ..., Bi) where each B;is either O or 1. Let B be any non-empty
subset of X. Then B can be made into an L-structure B by defining P;5 to be
{(Brs ..., Bu) € B; Bi = 0}.

Let A be any L-structure. Then A can be mapped into X by sending a to
(oyy ..., &), where o; = Oifa € P;, and o; = 1 otherwise. Let B be the

204 Undecidability and incompleteness [Ch. 13

image of A under this map. By construction, the assumptions of Lemma
12.27 are satisfied, and so for any sentence o, v,6 = vg0. Hence | o iff
B |= o for every B defined from a subset of X. Since each such B s finite, we
can decide for each B whether or not B |= o. Since there are only finitely
many B, we can decide whether or not B = ¢ for all B.®

Recall that a theory is complete iff for every sentence o either ¢ or 10 is
in the theory.

Proposition 13.2 Forany A, ThA is complete. Conversely, if A is a model of
the complete theory I then I” = ThA.

Proof Plainly ThA iscomplete. Let A be a model of the complete theoryI'.
By soundness, if g isin I"itisin ThA. If cisnotin I" then —oisinI. In this
case, — o isin ThA, so, as required, o is not in ThA.®

Proposition 13.3 A complete recursively axiomatisable theory is decidable.

Proof Let I be a complete recursively axiomatisable theory. If I' is
inconsistent it is the set of all sentences, and so it is decidable.

Suppose I' is consistent. Then, for any o, exactlyone of6 and —cisinT.
Hence {o;onotinT} is {o; —oinI"}. AsI"is recursively axiomatisable it is
r.e. But then {o; —oin I} is also r.e. Since I' and its complement are both
r.e., I is recursive.®

So we want to have conditions which ensure a theory is recursive. The
following criterion uses the Lowenheim—Skolem theorems in its proof.

Proposition 13.4 LetI" be atheory in a language with equality. LetT" have no
finite models, and, for some infinite cardinality A, let all models of T with
cardinality \ be isomorphic. Then I is complete.

Proof Suppose not. Then there is a sentence o such that neither 6 nor — ¢
isin I'. As I is a theory, neither 6 nor — o can be derived from I'. Hence
both T'U{c} and 'U{ -0} are consistent. Therefore they both have
models. These models will be models of I', and so must be infinite. By the
Upward Lowenheim-Skolem Theorem, they both have models of cardina-
lity A.. Let these models be A and B. Then A = cand B|= — 6. ButA and B
are models of I whose cardinality is A, so they are isomorphic. Hence, by
Lemma 12.27, a sentence true in A is also true in B, and we have a
contradiction.®

We now give examples of such theories.

Let L have binary predicate symbols = and <, and no other constant,
function, or predicate symbols. For convenience, we write x < y rather than
<xy.Let DLO be the theory with the following axioms.

(1) aVyVz(x <y Ay <z - x < 2)
(2) Vax¥y(x =y = = (x <))
B) xVy(x <y - = (y <x))

Sec. 13.1] Some decidable theories 205

4) IxVy(x = yVx <yVy <x)

B IxVy(x <y > Fz(x <z Az <Yy))
(6) VxIy(x < y)

(7)) ¥Yx3Iy(y < x).

Any model of DLO is a set with a relation which we will still denote by <
(rather than < ,). Conditions (1), (2), and (3) tell us this is a partial order,
and (4) ensures it is a linear order (also called a simple order). (5) says that
the order is dense; that is, that there is an element between any two distinct
elements. (6) and (7) say there is no last or first elements. The abbreviation
DLO stands for Dense Linear Order. Plainly both the rational numbers and
the real numbers are models of DLO.

Proposition 13.5 DLO is complete.

Proof We will show that any two countable models of DLO are isomor-
phic. As DLO plainly has no finite models, the result follows by 13.4.

Let A and B be any two countable models of DLO. Let A’ be any finite
subset of A, and a any element of A. We first show that any order-preserving
map f from A’ to B can be extended to an order-preserving map from
A" U {a} into B.

Let the elementsof A' be a,, ..., a,witha, < a, < ... < a,. Ifaisin
A' there is nothing to prove. If a,, < a, map a to any element of B which is
larger than fa,. If a < a, map a to any element smaller than fa,. Otherwise
there is some i such that a; < a < a,, . Inthis case we map a to any element
lying between fa; and fa; , ;.

Now let the elements of A and B be (arranged in some way, not in order
of increasing size, which is impossible) ay, a,, ... and b, by, By the
previous paragraph, it is easy to define (by induction) an order-preserving
map from A into B. We are looking for such a map which is onto B, and we
need to use what is called a ‘back-and-forth’ argument.

Let Ay and B, be {a,} and {b,}. Let f, be the only possible map from A,
to B,. Suppose we have defined, for some n, subsets A, and B,, of A and B
such that A, and B,, contain a; and b; (respectively) for all i<n, and an
order-preserving map f, from A, to B,. We will define inductively similar
subset A,,, ; and B,, , ; and an order-preserving map f,, . , which equals f,, on
A, If this is done, we have, by construction, UA, = Aand U B, = B, and
we may define a map f, which is certainly order-preserving, from A onto B by
requiring fa to be f,a for any n withain A,,.

By the previous discussion we can extend f, to an order-preserving map
g, from A, U {a,.,} into B. Let C, be the image of g,,. Then g, ! is an
order-preserving map from C,, into A. Define B, ., to be C, U {b, ,,}.
Then g,; ! can be extended, for the same reason, to an order-preserving map
h, from B,, . , into A. We need only define A, , ; to be the image of 4,,, and
define f,,, tobe b, '.m

We now look at a theory in the language with equality L which has
exactly one constant symbol 0, exactly one unary function symbol S and no

206 Undecidability and incompleteness [Ch. 13

other function symbols, and whose only predicate symbol is = . The theory
SUC is defined by the following axioms.

(1) Vx=(Sx = 0)

(2) Yx(x = 0V Iy(Sy = x))

(3) VxVy(Sx = Sy —» x = y).

(4) Vx = (S"x = x) for every positive integer n. Here S” is an abbreviation
for SS ... S, with S occurring n times. This infinite set of axioms is
obviously recursive.

~ Plainly N is a model of SUC, with 0y and Sy being 0 and the successor
function. It is easy to see that the union of N and any number of copies of Z is
also a model of SUC, with the corresponding function sending any » in a
copy of Z to n+1 in the same copy. Thus there are infinitely many
non-isomorphic countable models of SUC, since we may choose any finite
number of copies of Z or a countable number.

Proposition 13.6 SUC is complete.

Proof Because of axioms (3) and (4), any model A of SUC must be infinite,
since the elements S30, will all be distinct.

We shall show that any model of SUC is isomorphic to the union of a
copy of N and some copies of Z. If there are A copies of Z, where A is an
infinite cardinal, then the cardinality of A is A. Hence, for any uncountable
cardinal A, all models of cardinality A are isomorphic.

So take a model of SUC consisting of a set A together with a function S
and an element a,. We define a relation = on A by a = a’ iff thereisn=0
such that either a’ = S"a ora = S"a’. Using (3), we see easily that = is an
equivalence relation.

Consider the equivalence class of a,. Itis easy to see that it consists of the
infinitely many distinct elements a,, for nin N, where a,, is $”a,. So this class is
a copy of N.

Now look at any other equivalence class. Take any element b in this
class, and define b, forn=0by b, = S$"b. Because b is not equivalent to a,,
axioms (1) and (2) guarantee that for every positive n there is exactly one
element which is sent by $” to b. We define b_,, to be this element. Since
S§"* b _ 41y = S"b_, wesee thatSb_,) = b_,. By the definition of =,
our equivalence class must consist of the elements b,, for all » in Z. Hence
this class is a copy of Z.m

13.2 EXPRESSIBLE SETS AND REPRESENTABLE FUNCTIONS

13.2.1 The language and axioms of number theory

The language of number theory is the language with equality L whose other
constant, function, and predicate symbols are a constant symbol 0, a unary
function symbol S, two binary function symbols + and X, and a binary pre-
dicate symbol <. Plainly N is an L-structure, with 0 corresponding to 0, the

Sec. 13.2] Expressible sets and representable functions 207

successor function Sto S, and so on. For convenience, when s and ¢ are terms
we shall write s + ¢ rather than + s¢, and so on.

To each natural number » we associate a closed term n of L, called the
numeral of n. This is done inductively. The numeral of 0 is defined to be 0,
and the numeral of n + 1is defined to be Sn. We can show by induction that
Ny is just z.

Let A be the following set of sentences.

(1) m + n = pforallm,n,and pwithm + n =p
(2) m X n = qforall m,n, and g withmn = g
B)Vxxsnex=0Vx=1V...Vx =n)foralln.

Plainly A is a recursive set of sentences, and Nisa model of A. The set A is so
simple that any theory which deserves to be called number theory must
include A. Observe that from (3) we find that A |- m < niffm < n. We have
not required —(m = n) whenm #* n.

Let B, be the finite set of sentences

BiisVx(x + 0 = x)

B,is VxVy(x + Sy = S(x + y))

Byis Vx(x X 0 = 0)

Bsis VxVy(x X Sy = x X y + x)
BsisVx(x<0 < x = 0)

Beis VxVy(x<Sy < x=<y Vx = Sy).

Plainly N is a model of B, also.
Lemma 13.7 By |- A.

Proof By induction. From B; we derive m + 0 = m, which is the start of
the induction. Let m + n = p, and suppose By |- m + n = p. From B, we
derivem + Sn = S(m + n). So B |- m + Sn = Sp. Since Sn and Sp are
the numerals of » + 1and p + 1, this proves the inductive step.

Now B3 m X 0 = 0, which starts the induction for multiplication. Let
mnbe q,andletm(n + 1) be r. Suppose, inductively, that B|- m X n = q.
From B, we derivem X Sn = m X n + m. Hence By|- m X Sn = q + m.
We have already seen that By}~ q + m = r. Hence By |- m X Sn = r, as
required.

The proof for =< is similar.®

13.2.2 Expressible sets and representable functions

It will be convenient to write ¢(x,, ..., X;) to mean that ¢ is a formula
whose free variables are among x,, .. ., x,. We will then write ¢(¢,, ..., &)
to denote the result of simultaneously replacing the free occurrences of
every x; with the corresponding ¢, We shall only need this when each ¢; is a
very simple term; except in one case, each ¢; is either a constant symbol or a
variable.

208 Undecidability and incompleteness [Ch. 13

Definition Let S C N* for some k. We call S expressible if there is a formula
o(xq, - .., xz) such that

if (n,, ..., ng)isin Sthen A | ¢(n,, ..., n,) and
if N ¢(ny, ..., n)then (ny, ..., ny)isin S.

A function f:N*— N” is called representable if its graph, which is the set
{(ny,....,0, my,...,m,); (my,...,m,) = f(ny,...,n,)},is expressible.

These definitions are slightly different from those used by other authors,
but I think they are more convenient in our approach. Different versions of
the definition will be given in the final section of this chapter.

Our main aim is to show that the expressible sets are exactly ther.e. sets.
The easiest proof uses the fact that r.e. sets are diophantine. Readers who
have not covered this material will have to be content with a longer proof
using modular machines and the Godel sequencing function. For those
readers who have seen the proof that r.e. sets are exponential diophantine,
but have not looked at the reduction to the diophantine case, I include yet
another proof, which again requires use of the Gddel sequencing function.
Alternatively, we can obtain similar results by extending the language with a
further binary function symbol (corresponding to exponentiation) and
corresponding additional sentences in A.

Lemma 13.8 To any polynomial P with non-negative coefficients there is a
term tp such that the formula tp = y represents P.

Proof If P(n,, ..., n,) is either n; or a constant m, then we take #, to be x,
or m, respectively. Otherwise Pis either O + R or OR, where O and R have
fewer additions and multiplications than P, so, inductively, we have suitable
terms ¢, and tg. We then define tp as {5 + g Or fp X Ig, respectively.
(Notice that Q and R are not unique, so there are several possibilities for ¢ .)
Let P = Q + R, the other case being similar. Define a and b by

Oy, ...,n) = a and R(ny,...,n,) = b. Then, inductively,
to(ny, ..., n;) = aandtg(ny, ...,n,) = bcanbothbe derived from A, and
are both true in N.
Suppose that P(n,, ..., n,) = m. Thenm = a + b, and so
Al a+ b =m.Sincetpisty + tg we also have that
Al tp(ny,...,n) =a + b,andso A |- tp(ny, ..., n;) = m.
Conversely suppose that tp(ny, ..., n;) = mis true in N. Then

m = a + bistruein N, and som = a + b, which tells us that
P(ny, ...,n) = m.m

Lemma 13.9 Let P and Q be polynomials with non-negative coefficients.
Then {(ny, ..., ne); P(ny, ..., ny) = Q(ny, ..., ng)} is expressible.

Proof Define m to be P(n,, ..., n;). By the previous lemma,

Sec. 13.2] Expressible sets and representable functions 209

Al tpny, ..., n) = m. If P(n,, ..., n) = Q(ny, ..., n,) we have

m = Q(ny, ..., n),andso A |- to(ny, ..., n,) = m. Hence

Al tp(ny, ..., n) = to(ny, ..., ny). Conversely, if

tp(ny, ..., my) = to(ny, ..., ny) is true in N then tp(n,, ..., n) = mis
true in N, and so Q(ny, ..., 1) = m, as required.®

Notice that the rule for left-introduction of 3 shows that if A - ¢(n) for
some n then A |- 3x¢, and conversely if x¢ is true in N then ¢p(n) is true in
N for some n. Similarly, if A - ¢(m,n) for some m and n then two
applications of the same rule show that A |- 3x3y¢, and so on. The
corollary below is now immediate.

Corollary Diophantine sets are expressible.
Theorem 13.10 A set is expressible iff it is r.e.

Proof Suppose S is expressed by ¢. Then (ny, ..., n,)eS iff
o(ny, ...,n,) € C(A). We know, by Theorem 12.9, that C(A) is r.e. Since
the map sending (n,, ..., n;) to ¢(ny, ..., n;) is recursive, by Church’s
Thesis, it follows that S, as the counter-image of a r.e. set by a recursive
function, is r.e.

Conversely, let S be r.e. Then S is diophantine, by the main theorem on
diophantine sets. The results follows from the previous corollary.®m

Lemma 13.11 The functions vy, J, and J~! are representable. So is the
function J':N*> — N2 defined by J'(m,n,r) = (J(m,n),r).

Proof J and y are both diophantine, since J(m,n) = riff
2r=(m + n)(m + n + 1) + 2m, while y(i,t,u) = riff there are g and s
withu = q(1 + (i + 1)) + randr + s = (i + 1)t. However, Theorem
13.10 shows that any diophantine set is expressible, and hence that any
diophantine function is representable.

It is easy to see that J~! is represented by ¢(x,, x3,x,), where ¢ is the
formula representing J. Similarly J' is represented by
O(xy, %2, %4) A X3 = x5.8

Lemma 13.12 Let f:N* — N*and g:N* — N be representable, and let S be
an expressible subset of N°. Then the set f~1S is expressible and the function gf
is representable.

Proof Let S be expressed by y and let f and g be represented by ¢ and 6.

Now (ny, ..., ny)isinf~'Siff thereis (m,, ..., mg)such that (m,, . . . m,)

isin S and f(n,, ..., n,) = (my, ..., m,). If this happens then

AF y(my, ..., m)Ad(ny, ..., n,my ..., my). Wesee easily that f 1S

is expressed by 3.))l v ays(\ll(ylv ey y.r) A ¢(X1, s Xy Y1y e ys))
Similarly gf is represented by

3yl s ays(e()'b s Vo Xpa1s ooy xk+r) A ¢(xl’ e X Y1 ey ys))'.

210 Undecidability and incompleteness [Ch. 13

Now suppose A |- ¢(i) for all i < n. At the end of the discussion of
equality in the previous chapter it was shown thati = x |- ¢(i) — d(x).
Sincex = il i = x, we see that AU{x = i} |- &(i) — ¢. The rule for
left-introduction of V now tellsusthat A U {x = 0V...Vx = n} |- ¢. By
(3) of A, we have A U {x < n} |- ¢. Hence A |- Vx(x < n — ¢).
Conversely, if N|= Vx(x < n— ¢)then A = ¢(i) foralli < n. Similarly, if
we have A |- ¢(i) foralli < nthena|- Vx(x € n— x =nV ¢).

Lemma 13.13 Let f:N — N be representable. Then so is its iterate
F:N?> - N.

Proof By Lemma 9.13, F(m,n) = riff there are ¢ and u such that
v(0,t,u) = m,y(n,t,u) = r,and y(i+1,t,u) = fy(i,t,u) foralli < n.
Let ¢ represent vy, and let y represent fy. Suppose F(m,n) = r. Then
there are ¢ and u such that A |- ¢(0,t,u,m)), A |- &(n,t,u,r), and, for all
i < n there is some p (depending on i) such that
A @(Si, t,u, p) Ay (i, t,u, p). Thus ‘AF3z(H(Si, t,u, z2)AY(i, t,u,z)). By
the previous discussion, we see that A |- ¢(0,t,u,m) A ¢(n,t,u,r) A
o(n, t, u), where « is the formula

VW(W = X > W =X \% 32(¢(Sw,y1,y2,z) /\ ‘V(W,Yh}’z,z)))-

Let 6 be the formula

¢(07Y1,YZ7X1) /\ ¢(x2,)’1,}’2,x3) /\ “(Xz,)’h)’z)-

Then A - 3y,3y,0(m, n,r,y,,y,). Reversing this procedure, we see that if
N | 3y,3y,0(m,n,r,y,,y,) then F(m,n) = r. Hence F is represented by
Ay, 3y0(x1, x2,%3,Y1,2) - B

Corollary 1 Let g:N?> — N? be representable. Then so is its iterate
G:N® > N2,

Proof LetfbeJg/~!. Thenfisrepresentable. Hence so is the iterate Fof f.
Since G is J~'FJ', G is also representable.®

Corollary 2 The functions sending n to m" and to m"*! are representable.

Proof The result is in fact true when we regard these functions as functions
of the two variables m and n. However, for the application it is enough to
know it for m fixed.

Now the function sending r to mr is obviously representable. Hence its
iterate, which sends (n,r) to m”r, is also representable, by ¢, say. The
functions we want are obtained by taking r to be 1 or m, so are represented
by ¢(xy,1,x,) and ¢(x,, m,x,).®

If we have shown that r.e. sets are base-2 exponential diophantine, but

Sec. 13.2] Expressible sets and representable functions 211

have not shown they are diophantine, we can now give another proof of
Theorem 13.10. A third proof will follow, using modular machines, and not
requiring any knowledge of diophantine properties.

Proof of Theorem 13.10 (second proof) Let S be r.e. Then there are

polynomials P and Q with non-negative coefficients such that neS iff there

exist n(1), ..., n(k), m(1), ..., m(k) with

P(n,n(1), ..., n(k),mQ), ..., mk)) =

Q(n,n(1), ..., n(k); m(1), ..., m(k)) and

m(i) = 2"@fori = 1, ..., k. This condition is expressed by

Ax; .. Ay Ly, Xy, o, Y0) = tole Xy, Ly A (g,) A
.. N\ &(xg, yi)), where ¢ represents the function 2”. 8

Proposition 13.14 Let M be a modular machine. Then the halting set H(M)
of M is expressible.

Proof Let the quadruples of M be (a;, b;, c;, R) for i in some index set / and
(aj, b;,c;, L) for jin some index set J. Let the pairs beginning no quadruple be
(ay, be) for k in some index set K. If we are given formulae ¢, for all i € I we
shall denote their disjunction by V, ¢;, and so on.

We know that («, B) is terminal iff there are u and v such that « = mu + a,
and B = mv + b, for some k in K. It is then easy to see that Term,, is
is expressed by 3y;3y, Vg(x; = m x y; + a, A x, = m x y, + by).

The function Next,, is defined by Next,,(«, B) = (o', B’) iff, for some u
and v, either

« = mu+a,p=mv+b,« = mu+c;,andp’ = v, forsomeiinl, or
o« = mu+a,p=mv+b,a = u,andp’ = m2v+c,-,forsomejinJ,or
mu+a,,p = mu+b,, o = « and B’ = B, for some k in K.

«

Hence Next,, is represented by 3y,3y,(0 V ¢ V y), where 0 is V, 0,, ¢ is
V; &;, and yis V ¢ v, and

0;isx,=mXy, +a, Ax,=mXy, +b;Ax;=mXmXy, +¢; A x,=y,,
¢;isx;=mXy, +a;, Ax;=mXy, +b;Ax3=y, Ax,=mXmXy, +c¢,
Veisx,=mXy, +a, Ax,=mXy, +b, Axs=x, Axs=x,.

It follows, from Corollary 1 to Lemma 13.13, that Comp,,, which is the
iterate of Next,,, is also representable. Hence the set {(«,,?);
Comp,,(«, Bt) € Term,,} is expressible; let ¢ express it.

Now («, B) € H(M) iff there is ¢t with («, B,?) in the latter set. Hence
H(M) is expressed by Jyd(x,, x,,y).®

Proof of Theorem 13.10 (third proot) Let S be r.e. Then its partial
characteristic function is partial recursive, and so can be computed by a
special modular machine M. We have seen that H(M) is expressible. AsneS

212 Undecidability and incompleteness [Ch. 13

iff Iny,n € H(M), it is enough, by Lemma 13.12, to show that In,, is
representable.

Now Inyn = (2,(m"** —m)/(m—1)). Thus Inyn=(2,r)iff(m—1)r + m=
m"*1. We know that the function m"*! is representable, by 6, say. Let p be
m— 1. Then In,, is represented by (x, =2) A 0(x,,p X X3 +m).®

13.3 THE MAIN THEOREMS

The main Undecidability and Incompleteness Theorems are now fairly easy,
as the hard work was done in the last section.

Two subsets A and B of a countable set X are called recursively separable
if there is a recursive set RwithA C Rand R N B empty. If A and B are not
recursively separable we say that they are recursively inseparable.

We shall denote the sets {o;N = 6} and {o;N # o} by T and F in this
section.

Theorem 13.15 (General Undecidability Theorem) C(A) and F are recur-
sively inseparable.

Proof Let Y be aset containing C(A) and not meeting F. Let S be a subset
of N (or N?) which is expressible, and let ¢ express it. The map sending n to
¢(n) is recursive, by Church’s Thesis, and S is the counter-image of Y under
this map. It follows that if C(4) and F were recursively separable, then any
expressible subset of N (or N2, similarly) would be recursive.

There are now two easy ways to complete the proof. Theorem 4.7 gives
an r.e. set which is not recursive, and this set is expressible by Theorem
13.10. Alternatively, Theorem 7.11 gives a modular machine whose halting
set is not recursive, and Proposition 13.14 shows this set is expressible.®

Theorem 13.16 (Undecidability of Number Theory) Let I" be a set of
sentences such that T - A and N is a model of T'. Then C(T) is undecidable.

Proof Since I' - A and N |= T we know that C(A) C C(I') C T. The
theorem is immediate from the previous theorem.®

Theorem 13.17 (Undecidability of Logic) Let L be the language of number
theory. Then ThL is undecidable, whether we regard L as a language with
equality or as a pure language.

Proof The theory C(B,) is undecidable, by the previous theorem, where
B, is the set of six sentences discussed in the previous section. Let be the
conjunction of these six sentences.

Then C(By) is {o; B |- 6}, and so is also {o; - B — &}. Since C(B,) is
undecidable, and the map sending 6 to p — o is recursive, the set {c; |- o},
which is ThL, must also be undecidable.

The above holds when L is regarded as a language with equality. If we
regard L as a pure language we have just shown that {c; E |- o} is

Sec. 13.3] The main theorems 213

undecidable, where E is the set of axioms of equality. The set E, by its
definition, is finite. Then the same argument as in the previous paragraph
shows that ThL (regarding L as a pure language) is also undecidable.®

Theorem 13.18 (Undecidability of Truth) T is not r.e.

Proof We already know that T is not recursive. If T were r.e. then
{o;N E =0} would also be r.e. But this set is just F, which is the
complement of T. As T is not recursive, it isimpossible for both T and F to be
r.e.m

Theorem 13.19 (Weak Form of Godel’s Incompleteness Theorem) LetT be
an r.e. set of sentences of L such that T |- A and N |= T. Then there is a
sentence in T which is not in C(T').

Proof Weknow that C(I')isr.e., and that Tisnotr.e. Since C(I') C T, the
result is obvious.®

The Completeness Theorem tells us that I |- o iff ¢ is true in all models
of I'. The Incompleteness Theorem simply says that there is a sentence o
true in the model N of T such that ' = . It follows (the same result is
immediate from the Lowenheim-Skolem Theorems) that I' has a model
different from N.

Notice that neither o nor — o are in C(I"). By definition o is not in C(T"),
while — o is not in C(I') because — o is not true in N. Thus C(T') is not
complete according to the earlier definition of completeness. Conversely, if
C(T') isincomplete then there is a sentence o such that neither s nor = gisin
C(T'). Since one of 6 and — o is true in N, one of the two (but we do not know
which) is true in N but is not in C(T"). This explains the name ‘Incomplete-
ness Theorem’. This version of the theorem is called the Weak Form
because it gives no indication of how to find such a sentence, but simply
asserts that there must be a suitable sentence. If we look at the proof we see
that it uses the following results. First, C(I') isr.e. if I"is r.e. If we follow the
proof using modular machines, the second fact needed is that H(M) is
expressible for any modular machine M, and the third is that there is a
modular machine with undecidable halting problem. This last comes from
the existence of a non-recursive r.e. set, which uses the diagonal argument.
In the other proof we also need the facts that there is a non-recursiver.e. set
and that all r.e. sets are expressible. If we put these pieces together in a
different way we can obtain the Strong Form of the theorem.

Theorem 13.20 (Strong Form of Gddel’s Incompleteness Theorem) Sup-
pose we are given I as before. Then we can find (explicitly and uniformly) a
sentence o which is in T but not in C(T').

Remark We first have to see what is meant by saying I is given. If I" were
finite, we could simply give all the elements of I', but we need to consider the
infinite case. Since we are referring to I" as r.e., we must have in mind some

214 Undecidability and incompleteness [Ch. 13

Godel numbering of the set of all sentences. Then the set of Gédel numbers
of members of I'isr.e., and hence is the image of a partial recursive function
f. To be given I" can be regarded as the same as being given f. So how are we
given a partial recursive function? This could be done by giving an abacus
machine which computes f; that is, by being given a string on a certain
alphabet. Better would be to specify some universal partial recursive
function, and then f can be given by giving an index of f. Hence we can
regard giving I" as being the same as giving some integer k.

Now what is meant by saying that ¢ can be obtained explicitly and
uniformly? To say that o is given uniformly means that there is a recursive
function g such that gk is the G6del number of a suitable sentence o if kis an
integer defining I' as above. To say that o is given explicitly means that we
are explicitly able to define (by an abacus machine, or whatever method
seems convenient) a suitable function g, and that we are not simply asserting
that such a g actually exists.

The detailed construction of g would be difficult. Among other things, it
would require us to construct an integer defining C(I') from an integer
defining I'. Nonetheless, it is clear that we know C(I') when I is known, and
that in fact Theorem 12.9 and Lemma 12.10 can be used to construct C(I")
from T’; in principle, then, we could explicitly find a computable function
which send the integer defining I' to the integer defining C(T").

Proof of Theorem Let the sentences §,, be defined as follows. If » is the
Godel number of a formula ¢ with at most one free variable then §,, is d(n).
Otherwise §,,is to be 0 = 0. Now we can tell of any #» whether or not it is the
Godel number of some formula ¢, and, if so, find the relevant ¢ and check
whether it has at most one free variable. Hence, by Church’s Thesis, the
function sending » to 3,,is recursive. Notice that the function § is constructed
to be a kind of diagonal function.

As C(T'}isr.e., because 'isr.e., it follows that {n; T |- §,,} isr.e. Hence
this set is expressible. Let y express it, and let 6 be — .

By definition, if [|- §, then A |- y(n). Hence y(n) isin T, and 6(n) is in
F in this case. Also, if " }< §,, then y(n) is in F, and so 6(n) is in T. Notice
also that if ' |- §,, then 3, is in T.

Now 0 is a formula with one free variable. Let its G6del number be k.
Using the diagonal argument, we consider §,. Then, by definition, &, is just
8(k). So the above tells us that if ' |- §, then §,is in both T and F, which is
impossible.

Hence we have both T }£ §, and §, in T, as required.®

Notice that the truth of §, amounts to saying that 6(k) is not derivable
from I'. Since 8, is just 6(k), this amounts to saying that the meaning of §, is,
‘This statement is unprovable from I"’, which is the very informal version
which we mentioned in the first chapter.

The sentence o constructed by this is highly artificial, even when I is
chosen to be very nice. It was an open question for a long time whether there
was a sentence which was of genuine mathematical interest and which was
true but not derivable from reasonable axioms. Such sentences have been

Sec. 13.4] Further results 215

found in recent years, but they are too complicated to give here. Though
subtle, their truth is accessible to an advanced undergraduate. The fact that
they are not provable is much deeper, however. The results usually state that
to each n there is an m with a certain property, and the unprovability is
connected with the fact that m increases very rapidly with #n; in fact m, as
function of n, increases much faster than any function which can be proved
total.

We now look at a concept somewhat weaker than expressibility. A set S
is called definable in N if there is a formula ¢ such that (n,, ..., n,)eS iff
¢(ny, ..., ny)istruein N, and a function is called definable in N iff its graph
is definable in N. Plainly any expressible set and any representable function,
that is, anyr.e. set and any partial recursive function, are definable in N. If §
is definable in N by the formula ¢, then the complement of § is plainly
definable in N by the formula — ¢. In particular, there are definable sets
which are not r.e. (for instance, the complement of a set which is r.e. but not
recursive). It is also easy to see, as in Lemma 13.12, that the counter-image
of a definable set by a definable function is itself definable.

Is the set of Godel numbers of sentences true in N a set definable in N? At
first glance this question might appear pointless, since it only replaces the
question of the truth of one sentence with the question of the truth of
another sentence. But if this set were definable by a formula ¢ (we shall soon
see that it is not) then questions about the truth of arbitrary sentences could
be reduced to questions about the truth of the sentence ¢(n) for varying n;
thus ¢ would have in some sense a universal property.

Theorem 13.21 (Undefinability of Truth) The set of Gédel numbers of true
sentences is not definable in N.

Proof Suppose this set were definable. By the preceding remarks, the set
{n; 3§, istrue in N} would also be definable, where §,, is defined in the proof of
Theorem 13.20. Let ¢ define this set, and let 0 be — ¢. Then §,,is true in N iff
0(n)is false in N. Let k be the Godel number of 8. Then &, is just 8(k), and we
get the usual contradiction.®

13.4 FURTHER RESULTS

Godel’s original proof did not refer to truth in N, but instead showed that
C(T) is incomplete. One advantage of this is that no mention is made of
truth, which is a concept requiring an infinite process to check, but only of
derivability, and we can check whether or not a tree is a derivation by a finite
process. A further advantage is that the theorem can be proved in cases
where I' does not have N as a model. In order to prove these versions we
need stronger forms of expressibility and representability.

The set B of sentences consists of the six sentences of B, together with
the three further sentences

B Vx(—=(Sx = 0))

216 Undecidability and incompleteness [Ch. 13

Bs: VxVy(Sx = Sy - x = y)
Bo: VxVy(x <= y Vy =< x).

We shall write x < y instead of x < yA—1(x = y).
Lemma 13.22 Ifm # nthen B|- —(m = n).

Proof We use induction on min(m,n). We may assume m > n. Thenm #0,
and we may write m as p + 1 for some p. Then mis Sp, so B, - — (m = 0),
and the result follows if n = 0. If n#0 we write n as ¢ + 1, and so n is Sq.
Since Bg |- (m = n — p = q), and, inductively, B|- — (p = q), we have
B} - (m = n), as needed.m

Definition The subset S of N is strongly expressible if there is a formula ¢
such that B|- ¢(n,, ..., ny)if (ny, ...,n)eSand B = ¢(n,, ..., ny)if
(ny, ..., nE)ésS.

The function f:N¥ — N is strongly representable if there is a formula ¢
such that B|- ¢(n,, ..., ng,m)iff(ny, ..., n,) = mandf(n,, ..., n,) =
mif y(ny, ..., n,,m)is true in N and such that

Bl Vx; ... Y VyVz(d(xq, - -y X6 Y) A O(xy, ooy X4y 2) = y = 2).

We shall see that all partial recursive functions are strongly representable,
while strong expressibility is equivalent to recursiveness.

Lemma 13.23 Letf,, ..., f,,N* — Nand g:N" — N be strongly represen-
table. Then so is their composite h:N* — N.

Proof Let the functions be strongly represented by ¢, ..., ¢,, and v,
respectively. Let 0 be the formula

3.),l 3yr(d)l(xla "'xkvyl) AN oo A ¢r(xl’ ""xkvyr) A
AW(YI’ e Yoo ""yr’y))'

As in Lemma 13.12, 0 satisfies the first two conditions for it to strongly
represent A.
We need only show that

B U {(bl(xl’ AR} xm)ﬁ) /\ e /\ ¢r(x1’ vy xk;yr) /\ \V(YD vey .Yrv.Y)v
Oi(xy, ooy X Z) A L AN DXy, ey Xk 2) A (2y, .., 2,,2))
Fy==z

For then the law of introduction of 3 (together with changing the names of
bound variables) tells us that B U {0(x;, ..., X Y), 0(xy,...,x,,2)} - y = z,
from which we can obtain the result we want. Now, from the given set of

Sec. 13.4] Further results 217

formulae we can derive y; = z;fori = 1, ..., r, since each ¢, strongly
represents f;. From the axioms of equality we have immediately that

n=uAho Ay =2, v0 - 00Y) S vz, 2,).

Since y strongly represents g we can then derive y = z, as needed.®

For the proof of the next lemma, a few results on derivations are helpful.
We exhibit a number of formulae, such that each formula in a pair can be
derived from the other. We know, as examples and exercises, that this holds
for the following pairs. First 0 A (¢ V y) and (6 A ¢) V (6 A). Second,
Ix(¢ V y) and Ax¢ V Ixy. Third, when y does not have x as a free variable,
dx(dp A y) and Ixp A y. Also, easily, we have the pair f < y and
(BAY)V (= BA = 7). Combining these, we see that, if x does not occur free
in y then the same result holds for Ix(« A (B < v)) and
Ax(x AB)Ay)V (Tx(e A =B) A — 7). Further, we note that
d(x) Ax = 0 ¢(0), and so Ix(d(x) A x = 0) |- &(0). Finally, note that
{v,0 A v} | 6, obviously, while {y,& A =y} |- 0, because the set is
inconsistent. Hence {y, @ AY) V (¢ A =)} |- 6.

Lemma 13.24 Let g:N* — N come from f:N**1 — N by minimisation.
Then g is strongly representable if f is.

Proof Let ¢ strongly represent f. For convenience of notation we take k to
be 1. Let y be the formula

Vww < z - Ay(d(x,w,) A (y = 0 &w = 2))).

Then y(x,2) | ¢(x, z,0), by the above comments. Also, with u being a
new variable, B - ¢(x,u,y) A ¢(x,u,0) — y = 0. Hence
B U {¢(x,u,0)} | —(d(x,u,y) A = (y = 0)), from which it follows that
B U {$(x,u,0)} - Yy = (6(x,u,y) A =(y = 0)). Since
y(x,2) F u < z > y((x,u,y) A ~(y = 0)), we find that
BU {u < zAvy(,2)} | - d(x,u,0). Hence
B U {u<zAwy(x,2)} - —w(x,u). Using the last axiom in B, we find that
B | y(x,z) A y(x,u) = u = z, giving us the third condition for strong
representability.

Suppose y(m, n) is true in N. Then ¢(m, n, 0) is true in N, so f(m, n) = 0.
Also, if r < n then yd(m,r,y) is true in N. Hence there is some s with
¢(m,r,s) true in N. Thus f(m,r) =s. Also, as (m, n) is true in N, we must
have s #0, so that gm = n.

Finally, let gm = n. Then f(m,n) = 0, while f(m,r) = s for some
non-zero s if r < n. Hence B |- ¢(m,n,0), and, if r < n, we have
B | ¢(m,r,s) where s #0. We then know that B - —(s = 0). Hence
B |- ¢(m,r,s) A (s = 0 & r = n) for all r < n. It follows that
B | 3y(¢p(m,r,y) A (y = 0 < r = n)) for all » < n. But we know that
B VYww<new=0V...Vw = n), As remarked before Lemma
13.19, this ensures that B |- y(m,n).®

218 Undecidability and incompleteness [Ch. 13

Theorem 13.25 A function is strongly representable iff it is partial recursive.

Proof Let f:N* — N be strongly represented by ¢. Then f(n,, ..., n,)=m
iff ¢(ny, ..., n,,m) is in C(B). Since C(B) is r.e. and the function sending
(ny, ...,m)tod(ny, ..., m)isrecursive, the graph of fwill ber.e., being the
counter-image of C(B) by that function. Hence f'is partial recursive.

We have seen that the set of strongly representable functions is closed
under composition and minimisation. We will show this set contains addi-
tion, multiplication, the projection functions, and the function ¢:N?> — N
given by c(m,n) = 1if m = n and 0 otherwise. It then follows, by Theorem
9.15 about min-computable functions, that the set of strongly representable
functions contains all partial recursive functions.

Plainly addition and multiplication are strongly representedbyx +y = z
and x Xy = z respectively, while the projection function =, is strongly
represented by x; = y.

Let ¢ be the formula(x = yAz =0V (-(x =y) Az =1).If
¢(m,n,r)istruein Ntheneitherm = nandr = Qorm+#nandr = 1,andso
r = c¢(m,n). Conversely, let c(m,n) = r. f m = n then r = 0 and
B |- ¢(m,n,r) immediately. If m # n then we know that B|- —(m = n),
and, because r = 1, again B |- ¢(m,n,r).

We still have to prove the final condition on ¢. It is enough to prove that
B U {¢(x,y,2) Ad(x,y,w)} - z = w.Now}- (x = y) V = (x = y).Sothe
rule for left-introduction of V tell us that it is enough to show that
Bu{$(x,y,2)Ap(x,y,w), x=y}z=w and also that
Bu{¢(x,y,z2)Ap(x,y,w), Ti(x=y)}Fz=w. Now from the first of
these we can derive both z=0 and w=0, and so we can derive z=w,
while from the second we can derive both z=1 and w =1, and so we can
again derive z = w.B

Proposition 13.26 A set is strongly expressible iff it is recursive.

Proof For convenience of notation, we will consider only subsets of N.
Suppose S is strongly expressible by the formula ¢. Then n € S iff
¢(n) € C(B), so, asusual, Sisr.e. Butalson e N — Siff - ¢(n) € C(B), so,
for the same reason, N — Sis alsor.e., and hence S is recursive.

Now let S be recursive, and let y strongly represent the characteristic
function of S. Then B |- y(n,0) if n € S, while B |- y(n,1) if n ¢ S. Now
B} —(1 = 0), and, by strong representability,

B U {y(n,1) Ay(n,0)} |- 1 = 0. Hence if n é S we have B|- - y(n,0).
Hence y(x, 0) strongly expresses S.®

It is sometimes useful to add a further condition to strong representa-

bility. This is done in the next proposition.

Proposition 13.27 The function f:N* — N can be strongly represented by a
formula ¢ such that B |- Vx, ... Vx, 3yd(xy, ... x,y) iff fis recursive.

Sec. 13.4] Further results 219

Proof Take k to be 1 for convenience of notation. Suppose there is such a
formula ¢. Since ¢ strongly represents f, we know that fis partial recursive.
We also know that Vx3Jy¢ is true in N. Hence for every m there is n such that
¢(m,n) is true in N. It follows that fm = n, and so fis total, as needed.

Conversely, let f be recursive and let y strongly represent f. Let ¢ be
the formula (y A 3yy) V (y = 0 A = 3yy) (here y is used both as a bound
and a free variable). We know that for any formulae o and p we have
|- Jy(«VB) <> Iya V IyP, and that |- Iy(aAB) <> Iy A B provided y does
not occur free in B. Using these we see easily that |- 3y <> Jyy V = Iyy,
and so |- Jy¢.

If fm = nthen B}~ y(m,n) andso B |- 3yd(m,y). Hence B} ¢(m,n).
As fis total we know that B - 3y¢(m, y) for every m. Hence if ¢(m, n) is
true in N, then so is y(m,n), and so fm = n.

Finally we have to show that B U {¢(x,z) A ¢(x,w)} |- z = w. Asinthe
previous proposition, it is enough to show both that B U {¢(x,z) A ¢(x, w),
Iyy}rz=w and that Bu{¢(x,z)A¢d(x,w), 1 Iyy}z=w. From
the former we can derive y(x,z) and y(x,w), from which we can derive
z = w by the fact that y strongly represents f. From the latter we can derive
both z = 0 and w = 0, so again we can derive z = w.®

We can now obtain the Undecidability and Incompleteness Theorems in
a somewhat more general setting than previously.

Proposition 13.28 Let F:N*> — N be a universal partial recursive function,
and let Kyand K, be {n;F(n,n) = 0} and {n;F(n,n) = 1} respectively. Then
K, and K, are recursively inseparable.

Proof Suppose the recursive set R separates them, and let y be the
chracteristic function of N — R. Then yn = 1if F(n,n) = 0 and xn = 0if
F(n,n) = 1. There is an integer k such that yn = F(k,n) for all n. In
particular, the function F(k, n) is a total function of n which takes on only the
values 0 and 1. Replacing n by k we get the usual contradiction.®

Theorem 13.29 The sets C(B) and {c; |- — o} are recursively inseparable.

Proof Let F, K,, and K, be as above. It is enough to find a formula ¢ such
that B} ¢(n) forn € Koand |- — ¢(n) for n € K,. For if R separates C(B)
and {o; | - o} then its counter-image by the recursive function which
sends # to ¢(n) would separate K, and K. Since no recursive set separates
these two, R could not be recursive.

Let y strongly represent the partial recursive function F(n,n). Let B be
the conjunction of the nine sentences in B. Let ¢ be B A y(x,0). If n € K,
then B |- y(n,0),andso B} ¢(n). If n € K, we have B |- y(n, 1). Since we
also know that B U {y(n,1) Ay(n,0)} - 1 = 0and B|- —(1 = 0), wesee
that if n € K, then B U {y(n,0)} |- L. In this case it follows that
|- = (B A y(n,0)), as needed.m

220 Undecidability and incompleteness [Ch. 13

Theorem 13.30 Let " be a set of sentences in a language containing L. If
I' U B s consistent, then C(I') is not recursive.

Proof Let B be as above. Then we know thatT’ U B} ciff |- B — o. It
follows that C(I' U B) would be recursive if C(I") were recursive. So we may
assume that B C T'.

The set of sentences of L is a recursive subset of the set of sentences of
our larger language. Hence, if C(I') were recursive then {c; o is a sentence
.of Lsuch thatT" |- ¢} would also be recursive. Since B C T, this set contains
C(B). Since T is consistent, this set cannot meet {c; - -}, so by the
previous theorem this set cannot be recursive.®

Gddel’s original proof of his Incompleteness Theorem required a special
condition on the set I'. We first obtain a proof under this additional
condition, and then show how this condition can be got rid of by using a
rather more complicated formula. Where previously we looked at the r.e.
set of formulae which could be derived from I', we now look at the recursive
set of pairs (D, 6), where D is a derivation of ¢ from a recursive set I.

Suppose we have a set I" of sentences in a language containing L and a
formula ¢ such that T' |- ¢(n) for all n. It is not necessarily true that
I |- Vxd. (Since we are not even requiring that N is a model of T, this is
clear. For a more interesting example, observe that if ¢ is 0 =< x then
A |- ¢(n) for all n. But there is a model of A in which Vx¢ is not true, so that
A # Vx¢. This model can be obtained by adding one extra element to N,
with suitable extended definitions for the functions.) In fact, if I' - Vx¢
using a derivation which has k steps then for every n there is a derivation of
¢(n) with £ + 1 steps. (For many formulations of logic, the requirement
that ' |- ¢(n) for all n with the derivation for each n requiring at most m
steps for some fixed m is enough to ensure that I’ - Vx4). But we can
reasonably hope that at least we do not have ' - — Vx¢. A set I such that
for no formula ¢ dowe have ' - ¢(n) forallnand alsoT" - — Vx¢ is called
w-consistent. Plainly an @-consistent set must be consistent (since every
formula can be derived from an inconsistent set). Also I' must be
o-consistent if it has N as a model. Further, if [|- B then T |- o iff
' U B|- o,andsoI" U B will be -consistent iff I is @-consistent.

Theorem 13.31 (Original Form of Godel’s Incompleteness Theorem) LetT
be a r.e. set of sentences in a language containing L. Then we can find a
sentence o such that U o if T U B s consistent and such thatT ¢ - o if
I' U B is w-consistent.

Proof We may assume I is recursive and not just r.e., by Lemma 12.10.
We may also assume that BT, replacing I by T'UB.

Since I' is recursive, the set of derivations from I' is recursive, and, in
particular, {(s,¢); ¢ is the Godel number of a derivation from I" of the
sentence with Godel number s} is recursive.

Let 3, be, as before, ¢p(n) if n is the Godel number of a formula ¢ with

Sec. 13.4] Further results 221

one free variable, and let 3, be 0 = 0 for all other n. Let P be the set {(n,m);
m is the Godel number of a derivation of 3, from I'}. Then P is recursive,
and hence P is strongly expressible. Let o strongly express P. (Then dy«
expresses {n; I" |- 8,}, which connects the current proof with the previous
one.) Let ¢ be = 3yw, and let k be the Gédel number of ¢.

IfT |- 3, there is some m with (n,m) € P, and so B |- a(n, m), and then
(since we are assuming B C I') T’ |- — ¢(n). In particular, since ¢ (k) is 8, if
'l ¢(k) thenalsoT' - — ¢(k), so I' ## ¢(k) if I is consistent.

Since 8, is ¢(k), we have just shown that T'H# §,. We will show that if T is
w-consistent and n is such that I'H §, then I'Hf —1 ¢(n). In particular, if I is
o-consistent then T = ¢(k).

Suppose that T §+ & ,, . Then (n,m) ¢ P for every m. By strong expressi-
bility, it follows that I' - — a(n, m) for every m. If T is w-consistent then
't A Vy—a(n, y). This is the same as saying that I'tf —1¢(n), as required.m

Theorem 13.32 (Rosser’s Extension of the Original Form) LetI beanr.e.
set of sentences in a language containing L such thatT" U B is consistent. Then
we can find a sentence 6 such thatT - c and T —o.

Proof As before, we may assume that I' is recursive and contains B. Let
8, and « be as before. Then the set O = {(n,m); m is the G6del number
of a derivation of -3, from I'} is recursive, and we choose a formula B
which strongly expresses it. We take ¢ to be the formula

Vy(a— 3z(z<y A B(x, z))) and let the Godel number of ¢ be r. Intuitively
the meaning of ¢ is that if there is a derivation of §, then there is an earlier
derivation of —3,,.

We shall show that both I' |- §, and ' - -3, lead to contradictions.
Recall that §, is just ¢(r). Suppose first that I' |- §,. Then there is some m
with T’ |- o(r,m) (since B C T'). Since I' is assumed consistent, we cannot
have I' - -3, Hence B |- - B(r,n) for all n<m (in fact, for all n). It
follows, as in the remark before Lemma 13.13, that
B} Vz(z < m —» - p(r,z)). However, I' |- ¢(r) and ¢(r) is
Vy(o(r,y) = 3z(z<y A B(r, 2))). Since we already know that ' - o(r, m)
we deduce that ' |- 3z (z<m A B(r, 2)). This is a contradiction, since I is
consistent and contains B.

Now suppose that I'-—14,. As I is consistent we know that I" # 4,. This
time there will be some m such that B |- B(r,m), while B}~ - a(r,n) for all
n<m (in fact, for all n). As before, we have that B|- y<m — - «f(r, y).
Hence BU {«(r,y)} - — (y<m). By the last sentence in B it follows that
BU{a(r,y)} - m=y. Since B |- B(r, m) we see that
BU {o(r,y) |- 3z(z<y A B(r,z)). Hence
B Vy(a(r,y) — 3Jz(z<y A B(r,z))); that is, B |- ¢(r), giving the
required contradiction.®

These results can be extended further, to certain sets of sentences in
some languages that do not contain L. It is necessary to show how we can
interpret the symbols of L in the new language in such a way that the
translations of the sentences in B can be derived from the given set. This is

222 Undecidability and incompleteness [Ch. 13

not particularly difficult, but is rather technical. The most useful application
is to extend Gddel’s Theorems to the language of formal set theory. But in
order to prove that we can make the necessary translations we would need to
go into considerable detail about axiomatic set theory, which would take too
much space.

There is a second Incompleteness Theorem of Gddel. This states that,
under reasonable circumstances, if a set I" of sentences is consistent then we
cannot derive from I' the consistency of I' (more precisely, there is a
sentence ¢ whose intuitive meaning is that I' is consistent but which cannot
be derived from I'). The general idea is to formalise precisely within number
theory all the informal arguments we have used to prove the previous
theorems. Though the idea is reasonably understandable, the details are
exceptionally long and technical, and are beyond the scope of texts much
more advanced than this one.

14

The natural numbers under addition

We have seen that the theory of N with the operations of addition and
multiplication is undecidable. In surprising contrast, the theory of N under
addition (but not including multiplication) is decidable. This will be proved
in the second section. The technique is quite difficult, and a simpler example
of the same technique is given in the first section.

14.1 THE ORDER RELATION ON Q

In this section we look at the theory of Q with the order relation < and the
relation =. We have already shown, in section 13.1, that this theory is
decidable. We give a new proof of this result. The current proof is harder
than the earlier one, and proves a slightly weaker result. Nonetheless this
proof is worth giving, as it shows the main steps needed in the next section in
a simpler form; other decidability results may also be proved in a similar
framework.

We now state a crucial lemma. The proof of this lemma will be left until
later in the section. Before proving the lemma, we will show how it leads to a
solution of the decision problem. In other situations, it is the proof of a
similar lemma that takes the hard work; most of the other steps follow as in
this section.

We have already defined equivalence of formulae. More generally, we
say ¢ is equivalent to y in the structure A if v,ip=v iy for any interpretation
iin A.

Lemma 14.1 (Elimination of Quantifiers) Let ¢ be a formula with no
quantifiers, and let x be a variable. Then we can find explicitly a formula ¢’
such that Ax¢ is equivalentin Q to ', and such that ¢' does not contain x and
does not contain any variable which is not in .

Once this is proved, we can also find ¢” such that 3x—¢ is equivalent in Q

224 The natural numbers under addition [Ch. 14

to ¢”, with ¢" not containing x or any variable not in ¢. Then Vx¢ is
equivalent in Q to —¢".

It follows immediately, by induction, that any sentence in prenex normal
form (see section 12.8) is equivalent in Q to a sentence containing no
variables, and that the latter can be found explicitly from the original
sentence.

We have shown in Proposition 12.33 that to any sentence we can find an
equivalent sentence in prenex normal form. The procedure in Proposition
12.33 is constructive, so the required sentence can be found explicitly using
that procedure. Alternatively, knowing that such a sentence exists we could,
given a sentence o, run through all derivations until we found one which
showed us that |- 6 <> ¢’ with ¢’ a sentence in prenex normal form. Similar
remarks apply at other stages of our results. It follows that given any
sentence we can find a sentence containing no variables which is equivalent
in Q to the original sentence. Hence to solve the decision problem for the
theory of Q it is enough to solve it for sentences containing no variables.

Since there are no constant symbols, the only atomic formula containing
no variable is L. Any sentence containing no variables is built up from L
using only -, V, A and —. Itis then easy to determine whether or not such a
sentence is true in Q. One method is to obtain (which can be done explicitly)
an equivalent sentence in disjunctive normal form. This sentence will be true
in Q iff at least one of its disjuncts is true in Q. But each disjunct is a
conjunction of atomic formulae and negations of atomic formulae, and it is
true in Q iff the formulae of which it is a conjunction are all true in Q. But
these formulae must be either L or — L1, and only the latter is true in Q.

Proofof Lemma 14.1 We know (see Proposition 12.34) that to any formula
which has no quantifiers we can find an equivalent formula in disjunctive
normal form, and the two formulae will involve the same variables (in fact,
they will involve the same atomic subformulae other than 1). Thus it is
enough to prove the lemma when ¢ is in disjunctive normal form. Further,
the discussion preceding Proposition 11.20 shows that unless ¢ is L or =L
we may assume that L does not occur in ¢. Note that the only atomic
formulae other than L are y=2z and y<z for some variables y and z.

Further, the formulae —(y=z) and —(y<z) are equivalent in Q to
y<zVz<y and y=2zVz<yrespectively. Using the distributive laws relating V
and A, we may assume that ¢, which is assumed in disjunctive normal form,
has its atomic subformulae appearing without negation. Also, altering the
order of the subformulae produces an equivalent formula, so this will be
done when convenient without further comment.

Now 3Jx(¢'V ") is equivalent to Ixdp’ V Ix¢”, so we may assume ¢
consists of a conjunction of atomic formulae. Further, if ¢’ does not involve
x the formula 3x(¢' Ad") is equivalent to ¢’ A Ix¢”, so we may assume each
atomic formula in ¢ involves x.

Plainly 3x(x<xA¢') is equivalent in Q to L. Also Ix(x=xA¢’') is

Sec. 14.2] The natural numbers under addition 225

equivalent to 3x¢’, while Ix(x=x) is equivalent to — L. Thus we may
assume each atomic formula in ¢ involves x on only one side.

Now dx(x=yA¢') and 3x(y=xA¢") are both equivalent to ¢’ (y/x) (since
¢’ has no quantifiers), so we have what we want if ¢ has either x=y or y=x as
one of its atomic subformulae.

We are left with three cases. The first is that ¢ is a conjunction of
formulae y;<x for some set of variables y;, and the second is that ¢ is a
conjunction of formulae x<y;. In both these cases ¢ is true in Q, and so is
equivalentin Qto — L.

The third case is that ¢ is ¢’ A", where ¢' is a conjunction of formulae
yi<x for variables y;, where i runs over an index set /, and ¢" is a conjunction
of formulae x<z; for variables z;, where j runs over an index set J. It is then
easy to see that Ix¢ is equivalent to Q to the conjunction, for alliin /and all j
in J, of the formulae y;<z;. This completes the proof of the lemma, and so
shows that the theory of Q is decidable.®

In section 13.1 we showed that the theory DLO was complete, and hence
that DLO was decidable and was the theory of Q. The proof above can be
modified to give this result. Any time we have formulae 6 and y which are
equivalent, we will need to show that |- 8 <> y. In each relevant case this is
easy to prove directly; alternatively, it follows from the Completeness
Theorem. Also, whenever we showed that formulae 6 and y were equivalent
in Q, we will need to show that DLO |- 8 <> y. For most of the times this
is needed it is easy to show. The biggest difficulty is to obtain the result when
0 is the formula 3x¢ of the previous paragraph and vy is the conjunction of
the formulae y;<z; for all i in / and j in J, in the notation of the
previous paragraph. It is still easy to show that DLO |- 3x¢—y. We also
need to show that DLO |- y—3x¢. This is most easily done by showing that
DLO | «,Ay—3x¢, where «, runs over a set of formulae whose disjunction
isin DLO. The relevant formulae «, give the possible orderings of the y; and
of the z;. The details are left to the reader.

14.2 THE NATURAL NUMBERS UNDER ADDITION

We have seen that the theory of the natural numbers under addition and
multiplication is undecidable. Surprisingly, if we forget about multiplica-
tion, and consider the theory under addition only we get a decidable theory.

We shall always be looking at truth of sentences in N, and will not be
considering derivations of sentences. Because of this, the distinction
between symbols of the language and the corresponding functions and sets is
unimportant. To make easier reading, we will no longer bother to use bold
type to make this distinction. However, it is still convenient to distinguish
the natural number » and the corresponding numeral n.

The symbols of the language will be 0, S, +, <, =, and a further set of
unary predicate symbols D, for all p>1. The subset D, is {n; p divides n}.
We shall see in the exercises that the method of elimination of quantifiers
cannot be used without the extra symbols (or some variation of them).

226 The natural numbers under addition [Ch. 14

Let k be a positive integer and ¢ any term. We write k¢ to denote the term
t+(t+(¢+...)), where t occurs k times. Notice that this is simply an abbrevia-
tion, and is not a disguised way of re-introducing multiplication.

It is easy to see by induction that given any term ¢ whose only variables
are X;(),..-,Xigr), we can find kq,...,k,, and m such that t=m+k;x;;;)+...+
knXicy is true in N.

Lemma 14.2 The set of quantifier-free sentences which are true in N is
decidable.
Proof Such a sentence involves no variables. Consequently, each term
which occurs is closed, and we can find explicitly (for instance, by induction)
to each such term ¢ a number # such that t=n s true in N. If we replace each ¢
by the corresponding n, we get a formula, equivalentin N to the original one,
in which all terms that occur are numerals. We can replace this formula by an
equivalent one in disjunctive normal form (and this can be explicitly found).
To determine whether or not such a formula is true in N, we only need to
consider the truth in N of the atomic subformulae. So we only need to find
out whether or not certain formulae of form m<n, m=n, and D,(n) are true
in N, and this is immediate.®

The arguments of the previous section can now be used to tell us that in
order to show the theory of N is decidable it is enough to prove the following
lemma.

Lemma 14.3 (Elimination of Quantifiers) Let x be a variable and ¢ a
quantifier-free formula. Then we can find a quantifier-free formula 0, such
that 0 does not involve x and only involves those variable which are involved
in ¢, for which Ax¢ is equivalent in N to 0.

Proof As in the previous section we can assume ¢ is in disjunctive normal
form. We canreplace = (t<t') by t' <t+1, = (¢t=t") by (¢:<t’) V (¢ <f), and t=¢'
by (¢<t'+1) A (¢ <t+1) and get a formula equivalent to ¢ in N. Further, we
can replace —D,t by the disjunction of the formulae D,(t+r) for 0<r<p,
and the result will still be equivalent in N to ¢. This is because p divides
exactly one of n, n+1,..., n+p—1, for any nin N.

If we make the above changes and then use the distributive laws, we may
assume that ¢ is in disjunctive normal form, and that the atomic formulae
occurring do not involve = and do not occur negated.

Now any term is equal in N to a term ¢+kx, where ¢ is a term not involving
x and keN; here we allow k=0 to include the case where x does not occur.
The formula t+kx<t'+k'x is equivalent in N to one of three formulae; if
k<k' it is equivalent to r<t'+(k'—k)x, if k>k' it is equivalent to
t+(k—k")x<t', while if k=k’ it is equivalent to t<¢'. Thus we may assume
our formula does not have x occurring on both sides of an inequality.

As in the previous section we can further assume our formula consists
only of one disjunct, and that x occurs in every atomic subformula. Thus we

Sec. 14.2] The natural numbers under addition 227

are assuming that ¢ is the conjunction of various formulae of forms r<t'+kx,
t+kx<t' and D,(t+kx), where ¢ and ¢' are terms not involving x, and not
involving any new variables.

Now, for any positive integer n and any terms ¢ and ¢’ (whether or not
they involve x) we know that in N ¢<t' is equivalent to nt<nt' and D)t is
equivalent to D,,,(nt), and that n(¢+¢')=nt+nt" is true in N. It follows that
the various integers k which occur in the atomic formulae may be replaced in
this manner by their least common multiple. That is, we may assume that
there is a fixed integer k such that ¢ is the conjunction of various formulae
t<t'+kx, t+kx<t', and D,(t+kx).

Let ¢' be obtained from ¢ by replacing each kx by x. It is easy to check
that 3x¢ is equivalent in N to 3x(¢’ A Dyx). It is because of this step that we
need the predicate symbols D,, as one such symbol has now been introduced
even if the original formula did not involve any such symbol.

So we can now assume that ¢ is the conjunction of formulae of the forms
t<t'+x, t+x<t', and D,(t+x), where ¢ and ¢’ are terms not involving x. As
3x¢ is equivalent in N to Ix($ A 0<1+x), we can assume that 0<1+x is one
of the conjuncts occurring.

We now turn our attention from N to Z, the set of all integers. Because of
the presence of the conjunct 0<1+x, any interpretation in Z under which ¢
is true must send x to an element of N. Now any interpretation iin N can also
be regarded as an interpretation in Z. By the previous remark, 3x¢ is true
under i when i is regarded as an interpretation in N iff it is true when i is
regarded as an interpretation in Z. Also, any quantifier-free formula is true
for i in N iff it is true for i in Z. Thus we need only find a formula 0 of the
required form such that 3x¢ is equivalent to 0 in Z.

We can now extend our language by including a symbol for subtraction.
Once this is done, ¢ can be regarded as the conjunction of formulae of the
forms u<x (where u runs over some set U), x<v, and D, (¢+x), where u and
v are terms of form t—¢'. There will be at least one formula u<x, because of
the conjunct 0<1+x.

Let m be the least common multiple (or, indeed, any common multiple)
of all the integers p occurring in the various D,. Choose some u occurring in
some inequality u<x and some r with 1<r<m. Various formulae x<v and
D, (t+x) will occur in ¢. For each chosen u and r, let y,,, be the conjunction
of corresponding formulae r+u<v and D,((t+r)+u). Let y, be the disjunc-
tion of all y,,,, and let y be the conjunction of all y,.. We shall show that 3x¢
is equivalent in Z to y, and will then find a formula 6 not involving
subtraction which is equivalent in Z to y.

Let i be any interpretation in Z. First suppose that y is true under i. Then
v, is true under i for each u, and so for each u there is r with y,,, true under i.
We may choose ug in U such that iup=iu for every u in U. Let ry be the
corresponding value of . Then, by definition of r, all the formulaery + uy <v
and D,(t + (r + u,)) are true under i. By the choice of u,, all the formulae
u <ry + ug are also true under i. Thus ¢ is true under ', where i'x =r, + iug and
i'y=iy for all other variables y. Hence Jx¢ is true under i.

Conversely, suppose 3x¢ is true under i. Then there is 7 in Z such that n

228 The natural numbers under addition [Ch. 14

satisfies, for all u, v, ¢, and p occurring, the conditions iu<n, n<iv, and p
divides it+n. Choose any u. Then, as n—iu>0, there will be some ¢=0 and
some r with 1<r<m such that r+iu=n—qgm. Since m is a multiple of every p
occurring, we know that p also divides it+r+iu. Since g=0, we still have
r+iu<iv. Thus y,, is true under { with this choice of r. Hence y,, is true under
i. Since this holds for every u, vy is true under i.

Finally, we have to replace y by a formula not using the subtraction sign.
We begin by replacing the terms of the extended language which occur in y
by terms which are equal to them in Z and which are of the form ¢t—¢' for
some terms ¢ and ¢’ of the original language. This is easily done, using the
rules for addition and subtraction in Z. Next, any formula t;,—#<t;—t, is
equivalent in Z to ¢, +1,<t,+#;. Also, if n and n’ are in N, p divides n—n’ iff
there is some r with 1<r<p such that p divides both n+r and n’+r. Hence
D,(t—t') is equivalent in Z to the disjunction, for all r with 1<r<p, of the
formulae D, (t+r) AD,(¢'+r). Making these changes gives the formula 6 we
need.®

A topic of great interest which we are not considering in this book is that
of complexity of computation. In that context it can be shown that the theory
of N under addition has a difficult decision problem (in terms, for instance,
of the number of steps necessary to decide whether or not a sentence of given
length is true in N).

We should also consider the theory of N under multiplication, not
permitting the addition symbol. This theory is undecidable. In fact, we can
define addition in terms of multiplication. Hence any sentence involving
addition can be replaced by an equivalent one without addition; this means
that if we could find a decision procedure for the theory of multiplication we
could obtain a decision procedure for the theory with both multiplication
and addition, which we know is impossible. To define addition in terms of
multiplication observe that in N we have a+b=c iff either a=b=c=0 or c¢#0
and (ab+1)c®>+1=(ac+1)(bc+1). Notice that addition of 1 is permitted,
since our language contains the symbol S, whose corresponding function is
just the successor function.

Exercise 14.1 Let 0 be a formula in the language of addition (without the
additional symbols D) which is quantifier-free and whose only variable is x.
Show that the set {n;NF0(n)} is either finite or has finite complement.
Deduce that there is no quantifier-free formula involving only the variable x
which is equivalent in N to Jy(x=y+y).

Exercise 14.2 Use elimination of quantifiers to give another proof that the
theory of N under the successor function is decidable.

Exercise 14.3 Extend the previous exercise to give an elimination of
quantifiers argument that the theory SUC is complete (and hence is
decidable and also equals the theory of N under the successor function).

Sec. 14.2] The natural numbers under addition 229

Exercise 14.4 Complete the elimination of quantifiers argument indicated
in the first section to show that DLO is complete (and hence is decidable and
equal to the theory of Q under the order relation).

Notes

CHAPTER 1

Godel proved his incompleteness theorem in 1931 C.E. (The abbreviation
AD for the date is offensive to those of us who are not Christian, and
scholars now use C.E. and B.C.E. These are usually described as meaning
(Before) the Common Era. But it seems to me that it is also offensive to
describe this system of dating as common — though of course it is widely
used — and it is best referred to as the Christian era, meaning the way
Christians reckon dates.)

Russell published his paradox in 1903 C.E.

Cantor founded the theory of infinite sets in a series of papers during the
last quarter of the nineteenth century C.E.

Epimenides was not aware of the paradoxical nature of his remark. The
original Epimenides was a semi-legendary Cretan of about 630 B.C.E. (my
classical knowledge is not good enough to use the Greek system of dating).
An account of the origins of the gods written about 430 B.C.E. had its
authorship ascribed to Epimenides (it was a common practice to claim
ancient authorship for recently produced: work). It contains a phrase
translated as ‘Cretans, ever liars, wretched creatures, idle bellies’. For more
information about Epimenides, see West, M. L. (1983), The Orphic poems,
Oxford, Clarendon Press, pp. 48-53.

CHAPTER 2

The word ‘algorithm’ looks as if it is related to the word ‘logarithm’. In fact
the latter word comes from Greek and the former from Arabic. But the
spelling ‘algorithm’ has come from association with ‘logarithm’; strictly the
word should be ‘algorism’, which was the older form.

The word comes from the name of the great Islamic mathematician Abu
Ja’far Muhammad ibn Musa al Khowarismi (spellings differ slightly in
different books). The last part of his name, al Khowarismi, which means a

Notes 231

man from the town of Khowarism, gave rise to the word ‘algorism’. His
book, written about 210 A.H. (after the hejira — the Islamic method of
dating seems appropriate for an Islamic mathematician; the date corres-
ponds to approximately 825 C.E.) called Al-jabr wa’l muqabalah, has given
us the word ‘algebra’ from its first words (words beginning with ‘al’ are often
derived from the Arabic). Another of his books introduced to Europe the
Hindu system of numbers; because they first reached us from Arabic
mathematicians this system is known to us as the Arabic numerals.

For more information about al-Khowarismi see Boyer, C. B. (1968) A
history of mathematics, New York, John Wiley, and also McNaughton, R.
(1982) Elementary computability, formal languages, and automata, Engle-
wood Cliffs, New Jersey, Prentice-Hill, p. 12.

CHAPTER 3

While nested recursion leads, as we have seen, out of the class of primitive
recursive functions, if a function so defined happens to be bounded by a
primitive recursive function then it is primitive recursive. For this and many
other results on multiple and nested recursion, and other properties, see
Peter, R. (1967) Recursive functions, New York, Academic Press (trans-
lated from the 1957 German text published in Budapest).

CHAPTER 5

The name ‘abacus machine’ comes from the book by Boolos and Jeffrey
listed under ‘Further reading’, but my definition is not theirs. I learned about
these machines from Egon Borger, but they are due originally to Rodding.

Unlimited register machines were introduced in Shepherdson, J. C. and
Sturgis, H. E. (1963) Computability of recursive functions, J. Ass. Comput-
ing Machinery 10, 217-255. As a result these machines are often called
Shepherdson-Sturgis machines. In their paper they also define directly
partial recursive functions with domain the strings over any finite alphabet,
and show that this definition is equivalent to the usual one. They are then
able to prove that partial recursive functions are Turing computable using
any finite alphabet.

It is known that, with a suitable coding of n-tuples, any partial recursive
function can be computed by an abacus machine with only three registers.
Further, any partial recursive function can be computed by a register
program with only two registers (but not by an abacus machine with only two
registers). These results are proved in Borger, E. (1975) Recursively
unsolvable algorithmic problems and related questions re-examined, in:
Miiller, G. H., Oberschelp, A., and Potthoff, K. (eds.), ISILC logic
conference: proceedings of the international summer institute and logic
colloquium, Kiel, 1974, Berlin, Springer (Lecture notes in mathematics,
499). These results are also in Borger’s book given under ‘Further reading’.

232 Notes

CHAPTER 6

The paper from which I have quoted is Turing, A. M. (1936) On computable
numbers, with an application to the Entscheidungsproblem, Proc. London
Math. Soc. (series 2) 42,230-265. I am grateful to the London Mathematical
Society for permission to quote from this paper.

CHAPTER 7

Modular machines were originally introduced by Stal Aanderaa in a talk
given to the conference on ‘Decision problems in algebra’ at Oxford in 1976,
where he showed they provide a particularly simple approach to the
unsolvability of the word problem for groups. This work was expanded and
written up jointly with myself as Aanderaa, S. and Cohen, D. E. (1980)
Modular machines, the word problem for finitely presented groups and
Collins’ theorem, in: Adjan, S. 1., Boone, W. W., and Higman, G. (eds.),
Word problems 11: The Oxford book, Amsterdam, North-Holland, pp.
1-16, and the following paper in the same book. I later carried out further
development of the theory of modular machines. The material in the present
chapter and Chapter 13 on modular machines was originally presented in
Cohen, D. E. (1984) Modular machines, undecidability and incomplete-
ness, in: Borger, E., Hasenjager, G., and Rodding, D. (eds.), Logic and
machines: decision problems and complexity, Berlin, Springer (Lecture
notes in computer science, 171).

CHAPTER 9

The first proof that every r.e. set is exponential diophantine was given in
Davis, M., Putnam, H., and Robinson, J. (1961) The decision problem for
exponential diophantine equations, Annals of Mathematics (series 2) 74,
425-436. The main reason I included in the current book an exercise stating
that r.e. sets are closed under bounded universal quantification was that
their proof needed to look at bounded universal quantification of diophan-
tine sets. The proof given here that r.e. sets are exponential diophantine
comes from Jones, J. P. and Matiyasevi¢, Y. V. (1984) Register machine
proof of the theorem on exponential diophantine representation of enumer-
able sets, Journal of symbolic logic 49, 818-829.

It was known from the time of the first cited paper that if there is any
function of roughly exponential growth which is diophantine then all r.e.
sets are diophantine. The first detailed construction of such a function occurs
in Matijasevi¢, Y. V. (1972) Diophantine sets. Uspehi mat. nauk 217,
185-222, translated as Russian mathematical surveys 27, 124-164. The proof
given here follows (until the last step) Davis, M. (1973) Hilbert’s tenth
problem is unsolvable, American mathematical monthly 80, 233-269, which
is a very readable paper.

Some of the uses of diophantine properties (for instance, to obtain
Kleene’s Normal Form Theorem) are folklore; I have not encountered
detailed proofs elsewhere.

Notes 233

There are many other interesting questions about diophantine proper-
ties. We can ask for an explicit polynomial whose positive values are the
primes. We can ask what bounds can be found on the degree and the number
of variables in the universal polynomial. More information about such
questions can be found in Davis, M., Matijasevi¢, Y. V., and Robinson, J.
(1974) Hilbert’s tenth problem. Diophantine equations: positive aspects of a
negative solution, in: Mathematical developments arising from Hilbert
problems, Providence, American Mathematical Society (Proceedings of
symposia in pure mathematics, 28).

CHAPTER 11

We tend in our everyday use of expressions like ‘If A then B’ to mean
something closer to ‘A. Therefore B’ than to the formal meaning of —.
About the only time our use is identical to the formal one is when we express
our disbelief in some statement by saying, for instance, ‘If Rambo is a good
film then I’'m a Dutchman’.

Russell is supposed to have been asked once, ‘Given that 1=2, show that
you are the Pope’. Strictly speaking, this is a misunderstanding of the use of
‘If... then’. However, Russell replied, ‘The Pope and I are two. Therefore
the Pope and I are one’.

Lewis Carroll, author of the ‘Alice’ books, was a logician. In a poem in
his lesser-known book ‘Sylvie and Bruno’ he wrote, well before Russell,

He thought he saw an argument
That proved he was the Pope.

I have often wondered if he had discovered Russell’s argument.

CHAPTER 13

A readable account of interesting true but unprovable theorems is given in
C. Smorynski’s papers in Harvey Friedman’s research on the foundations of
mathematics, Harrington, 1. A. et al., Amsterdam, North-Holland (1985)
(Studies in logic and the foundations of mathematics, 117).

Further reading

COMPUTABILITY

Cutland, N.J. (1980) Computability. Cambridge University Press.

This text is intended for the same audience as my book. It bases the
major developments on (a variant of) register programs. The similarities to
and differences from the current book make it excellent supplementary
reading.

Boolos, G.S. and Jeffrey, R.C. (1974) Computability and logic. Cambridge
University Press.

An interesting approach to computability, and some extensive results on
logic. The flow diagram approach permits easy construction of various
Turing machines which are messy to define by quintuples; unfortunately,
they never give a precise definition of a flow diagram, but leave the concept
to be understood by examples.

Machtey, M. and Young, P. (1978) An introduction to the general theory of
algorithms. New York, North-Holland.

This is my favourite among the many books using a programming
approach. It has a good treatment of questions about complexity of
computation.

Hopcroft, J.E. and Ullman, J.D. (1979) Introduction to automata theory,
languages, and computation. Reading, Mass, Addison-Wesley.

I was probably exaggerating in calling the theory of computable func-
tions the pure mathematics of computer science. It is undoubtedly an
important part of such a concept. But the theory of formal languages and
automata should probably also be regarded as part of the pure mathematics
of computer science. This book is a classic in its treatment of all these topics.

Borger, E. (1989) Computability, complexity, logic. Amsterdam,
North-Holland.

Further reading 235

This is a translation from a German original (Berechenbarkeit, Kom-
plexitit, Logik. Wiesbaden, Vieweg) of which I have only seen the contents
list and the publicity material. It covers a great deal of material, both in
computability theory and in logic. It is intended both as a reference book and
as a text. The author, whose papers I have always found very clear, uses very
similar techniques to the ones I use where we cover similar material. I expect
this book to be an excellent one for a further course on computability and
logic.

LOGIC

van Dalen, D. (1980) Logic and structure. Berlin, Springer.
A more detailed account of logic than mine, also using natural
deduction.

Enderton, H.D. (1972) A mathematical introduction to logic. New York,
Academic Press.

This is the clearest account I know using the axiomatic method to define
derivations.

Bell, J. L. and Machover, M. (1977) A course in mathematical logic.
Amsterdam, North-Holland.

This book is intended for a one-year M.Sc. course in logic and computa-
bility. It is a very large book, useful as a reference text. It uses the tableau
method for derivations.

Hodges, W. (1977) Logic. Harmondsworth (Middlesex, England), Penguin
Books.

A very good introduction to logic. It covers philosophical and formal
aspects, and is particularly careful to show the problems involved in looking
formally at ordinary sentences.. His method of derivation is the tableau
method.

GENERAL READING

Newman, J.R. (ed.) (1956) The world of mathematics (first published in the
USA,; first publication in England 1960, London, George Allen & Unwin).

A fascinating collection of essays on many mathematical topics, by many
authors. Especially relevant are the essays in Part XIX, Mathematical
machines: can a machine think? and the article by E. Nagel and J.R.
Newman on Godel’s proof (also published as a book entitled Gadel’s proof).

Anderson, A.R. (ed.) (1964) Minds and machines. Englewood Cliffs, New
Jersey, Prentice-Hall.

A collection of articles about computers and thought, with arguments for
and against the suggestions that computers can (in principle) think and that
human brains are necessarily different from computers.

236 Further reading

Hofstadter, D. R. (1979) Gédel, Escher, Bach: an eternal golden braid.
New York, Basic Books (first UK publication by Harvester Press, currently
available in Penguin).

A long and rambling book, which you will either love or hate. It is a series
of variations on the theme of self-reference in its many aspects, including
Godel’s Theorem. It is intended for the interested reader with no special
knowledge of mathematics.

Smullyan, R. (1978) What is the name of this book? Englewood Cliffs, New
Jersey, Prentice-Hall.

Smullyan, R. (1982) The lady or the tiger? New York, Knopf.

Ray Smullyan is well known both as a logician (whose two books on
formal logic take an unusual and interesting viewpoint) and as a magician. I
have once seen him give a proof, using magic and logic, that mathematics is
inconsistent. He said, ‘Either mathematics is inconsistent or the coin in my
hand is a quarter’. I looked carefully and saw that the coin in his hand was a
quarter, so his statement was true. I didn’t stop looking at the coin in his
hand, but he showed me that the coin was in fact a dime!

In the books mentioned (and other popular books of his, published in
England by Penguin Books; he also has some books of unusual chess
problems) he talks about various aspects of self-reference. He then goes on
to provide a collection of logical puzzles. They are mostly complicated
extensions of the old puzzle about the island where there are two tribes, one
of which always tells the truth, the other always lies, and one wants to find
out what tribes certain people belong to. Probably only Smullyan could
finish up with versions of such puzzles which essentially amount to the
Incompleteness or Undecidability Theorems.

Index of special symbols

A (Ackermann’s function), 53

A (axioms for number theory), 207

a.. 67,70, 76, 89
Add,, 89

B (axioms for number theory), 215
B, (axioms for number theory), 207

¢ (index for composition), 130
Cat, 130

Clear,, 70

co, 38

Comp, 105, 106

COMP, 100

Compy,, 98

Copyp.q.r, 70

C(A) (consequences of A), 203

Dy, 125
Descopy, ,, 70
DLO, 204
dom, 20

exp,, 44
exq, 47

F (false), 155
F (sentences false in N), 212

In, 105, 106
IN, 100
InM, 97
InM',, 97
In-r'k, 89

J (function, 22, 40
J* (function), 47

Ji (function), 22, 40
J*, (function), 48
1(h) (jump), 78
Jk(il_) (mep). 78
J'«(iy) (jump), 78
Ji(iy »i2) (jump), 76

K (set), 31, 65
K (function), 22, 40, 43
K*, 47

L (direction symbol), 85, 96
L (function), 22, 40, 43

L (language), 174

L (Turing machine), 85

L* (function), 47

L* (Turing machine), 85
L(A) (language), 182
Large, 129

n (numeral), 207
Next, 104, 106

NEXT (function), 100
NEXT (relation), 107
NCXtM N 98

Out, 104, 106
OUT, 100
OutM, 97
Outy, 98, 90

p (padding function), 133

pd, 38

P (nth prime), 44

P. (propositional variable), 147
Py, P, (Turing machines), 85
P; (polynomial), 126

quo, 39, 44

238 Index of special symbols

R (direction symbol), 85, 96
R, R* (Turing machines), 85
R; (r.e. set), 137

rem, 39, 44

s (function in the s-m-n theorem), 131
S (successor function), 36

sk, 67,70, 76, 89

Seq, 129

sg, 38

Shiftleft, Shiftright, 90

sqr, 41, 47

Step, 137

Sub, , 89

SUC, 206

T (true), 155

T (sentences true in N), 212
Term, 106

TERM, 100

Termy,, 98

Test, 85

Test,, 89

Test{T,,T,}, 87

ThA, 203

w;, 137

X, , X,(a) (solutions of a difference
equation), 119

x, (variables of predicate logic), 174

yn ’ y'l(a)) 119

Z (zero function), 36

a[®], 172

v (sequencing function), 123
8, (diagonal sentence), 214
K, 25

', 43

,,; (projection functions), 36
D, 29,130

¢n, 31,130

d(t/x), 181

Xas Xap> 21

-, (modified subtraction), 38
A, 41,147,155
Vv, 41, 156

—, 41, 147, 155
—, 147, 155
©, 147,157
1,147

v, 41,174
3,41, 183

-, i, 163
|=,/ 158

<, 116

Index

Aanderaa, S., 232
abacus, 67
abacus computable function, 71, 90, 99
abacus machine, 67

primitive, 74

simple, 67

simple primitive, 75
accepted set, 107
accepting subset, 107
Ackermann’s function, 53
add instruction, 76
addition, 37, 38
adequacy, 167, 170, 191
adequacy theorem

for propositional logic, 170

for predicate logic, 196
admissible set, 55
algorithm, 26, 230

partial, 26
al-Khowarismi, 230
allowable function, 58
alphabet, 22, 84
Anderson, A. R., 235
argument, 145, 146

correct, 145, 146, 158

incorrect, 145, 146
arity, 175
associate, 96

left-, 96

right-, 96
atomic formula, 176
axiomatic method, 159
axioms

for a theory, 203

of equality, 197

base-2 exponential diophantine set, 111
base-2 exponential polynomial, 111
Bell, J. L. 235

blank, 84

Boolos, G. S., 231, 234

Borger, E., 231, 238

bounded minimisation, 43

bounded quantification, 42

bound occurrence of a variable, 180
busy beaver problem, 94

Cantor, G., 18, 230
Cantor’s diagonal argument, 18, 29, 213
Carroll, Lewis, 233
characteristic function, 21
partial, 21
Chinese Remainder Theorem, 123
Church’s Thesis, 103
clearing a register, 70
closed term, 175
code, 54, 104, 105, 106
Cohen, D. E., 232
compactness theorem, 199
complete consistent set, 169, 192
completeness theorem, Godel’s, 145, 167,
190
complete theory, 204
component functions, 24
composite number, 44
composite of functions, 21, 37
computable functions, 23, 24
informally, 24
intuitively, 24
computation
of a modular machine, 97
of a register program, 76
of a Turing machine, 86
concatenation of strings, 22
conclusion, 163, 186
configuration, 105
of a modular machine, 96
of a register program, 76
of a Turing machine, 85
terminal, 76, 85, 96
yielded by another, 85, 96
conjunction, 41, 157
consequence, 203
semantic, 157, 183

240

consistent set of formulae, 168, 192
complete, 169, 192
maximal, 169, 192

constant symbol, 194

contradiction, 157

coordinate functions, 40

copy of a register, 70
destructive, 70

cosign, 38

counter-image, 64

course-of-values recursion, 45

Cutland, N. J., 234

Davis, M., 119, 232, 233
decidable set, 25
decidable theory, 203
definable set, 215
defining sequence, 37
definition by cases, 39
depth, 68
derivation, 158, 161, 185
description, tape, 84
corresponding to &, 88
destructive copy, 70
diagonal argument, Cantor’s, 18, 29, 213
diophantine
function, 112
indexing, 130, 139
property, 112
set, 111, 209
base-2 exponential, 111
exponential, 111
main theorem on, 113
unary exponential, 111
disjunction, 41, 157
disjunctive normal form, 171, 202
divides, 44
domain of a function, 20
double induction, proof by, 58
double recursion, 47
dovetailing, 27
downward Lowenheim-Skolem theorem,
200

elimination of quantifiers, 223, 226
elimination
of A, 161, 185
of —, 162, 185
of V, 186
empty function, 20
empty register, 70
Enderton, H. D., 235
entry in register, 70
Epimenides, 17, 230
equivalent formulae, 170, 201
equivalent machines and programs, 76
Euler’s identity, 127
excess over a square, 47

Index

existential quantification, 41
existential quantifier, 183
exponent, 44
exponential diophantine set, 111
exponential polynomial, 111
exponentiation, 38
expressible set, 208

strongly, 216
extensions of a function, 21

false, 155
false sentence, 183
first-order predicate logic, 174
formation sequence, 154
formula
atomic, 176
Henkin, 194
of predicate logic, 175, 176
of propositional logic, 148
satisfiable, 157
formulae, equivalent, 170
four squares theorem, 127
free for x in ¢, 181
free occurrence of a variable, 180
function
computed by an abacus machine, 70
computed by a modular machine, 97
computed by a register program, 76
computed by a Turing machine, 89
partial, 20
total, 20
function symbol, 174

general undecidability theorem, 212
Godel, K., 18, 230
Godel number
of a configuration of a register program,
104
of a modular machine, 99
Godel numbering, 100, 130, 176
Godel’s Completeness Theorem, 145, 167,
190
Gadel’s sequencing function, 123
Gédel’s Incompleteness Theorem, 18
original form, 220
Rosser’s extension of, 221
strong form, 213
weak form, 213
Gaodel’s Second Incompleteness Theorem,
222
good set, 48
very, 48

halting problems, 93
halting set, 101
halting state, 86
head, read-write, 84

Index 241

Henkin formula, 194 Lagrange, 127
Hilbert, D., 111 language
Hilbert’s Tenth Problem, 111, 114 of first-order predicate logic, 174
history of a function, 45 pure, 197
Hodges, W., 235 with equality, 197
Hofstadter, D. R., 236 of number theory, 206
Hopcroft, J. E., 234 of propositional logic, 147
hypotheses, 163, 186 leaf, 160

marked, 160

unmarked, 160
left-associate, 96

incompleteness theorem, Godel’s, see left-introduction
Gaodel’s Incompleteness Theorem of V, 164

inconsistent set, 168, 192 of 3, 187
index of a function, 31, 130 length
indexing of functions, 130 of a number, 44

acceptable, 130 of a string, 22

diophantine, 130, 139 letters, 84

modular, 130 level of a function, 55

universal, 130 line, 76
indexing of r.e. sets, 137 listable set, 25
induction, principle of logic, 145

for formulae of predicate logic, 176 first-order predicate, 174

for formulae of propositional logic, 149 undecidability of, 212

for terms, 175) propositional, 145
informally computable function, 24 logical symbols, 147, 174
initial function, 36 Lowenheim-Skolem theorems, 200
input function, 97, 104, 106 L-structure, 182
instruction, 76

add, 76

jump, 76

stop, 76 machine
_ substract, 76 abacus, see abacus machine
interpretation, 184 modular, see modular machine
introduction random access, 80

of A, 161, 185 Turing, see Turing machine

of —, 162, 185 unlimited register, 76

of ¥, 186 Machover, M., 235

of V, left- and right-, 164 Machtey, M., 234

of 3, left- and right-, 187 Matiyasevi¢, Y. V., 232, 233
intuitively computable function, 24 maximal consistent set, 169, 192
invalid sentence, 183 min-computable function, 124
isomorphism, 198 regular, 124
isomorphism theorem, Rogers’, 135 minimisation, 25, 32
iterate of a function, 40 bounded, 43

pseudo-, 32
regular, 60

model, 183

modular indexing, 130

modular machine, 96, 211
corresponding to a Turing machine, 96
function computed by a, 97
special, 96

multiplication, 38

Jeffrey, R. C., 234
join, 22

Jones, J. P., 232

jump instruction, 76
jump, unconditional, 78

Kleene’s Normal Form Theorem, 63, 100,
126

Kleene’s s-m-n Theorem, 131 natural deduction, 159
natural numbers under addition, 225

negation, 41, 157
nested recursion, 53
label, 76 Newman, J. R., 235

242

non-determinism, 107
non-deterministic Turing machine, 85
normal form theorem, Kleene’s, 63, 100,
126

number, Gédel, 99, 104]
numbering, Gédel, 108, 130, 176
number theory

language of, 206

undecidability of, 212
numeral, 207

occurrence of a variable
bound, 180
free, 180

output function, 89, 97, 106

padding function, 133
pairing, 129
pairing function, 40
parentheses, 67, 147, 174
parsing tree, 152
partial algorithm, 26
partial characteristic function, 21
partial computable function, uiniversal, 30
partial function, 20
partial recursive function, 60, 73, 99
partial valuation, 157
Peter, R., 230
polynomial, 111
exponential, 111
base-2, 111
unary, 111
predecessor, 38
predicate, 41
predicate logic, first-order, 174
language of, 174
predicate symbol, 174
prenex normal form, 201
prime, 44
primitive abacus machine, 74
simple, 75 .
primitive recursion, 36
simultaneous, 45
primitive recursive function, 37, 75
primitive recursively closed set, 37
principle of induction
for formulae
of predicate logic, 176
of propositional logic, 149
for terms, 175
problem, busy beaver, 894
problems, halting, 93
program, 23, 24, 30
register, 76, 104, 115
projection functions, 36
proof, 145, 158
property, 41
diophantine, 112

Index

regular min-computable, 124
propositional logic, 145
language of, 147
propositional variables, 147
pseudo-minimisation, 32
pure language, 197
Putnam, H., 232

quantification
bounded, 42
existential, 41
universal, 41
quantifier
existential, 183
universal, 174
quantifiers, elimination of, 223, 226
quotient, 39

random access machine, 80
read-write head, 84
recursion
course-of-values, 45
double, 47
nested, 53
primitive, 36
recursion theorem, 132
recursive function, 61
partial, 60
recursively axiomatisable theory, 203
recursively enumerable set, 63
recursive set, 63
register, 70
used by an abacus machine, 71
register program, 76, 104, 115
regular min-computable
function, 124
property, 124
regular minimisation, 60
remainder, 39
replacement, 181
representable function, 208
strongly, 216
r.e. set, 63
restriction of a function, 21
Rice-Shapiro Theorem, 34, 65, 136
Rice’s Theorem, 32, 65
right-associate, 96
right-introduction
of V, 164
of 3, 187
Robinson, J., 232, 233
Rédding, D., 231
Rogers’ Isomorphism Theorem, 135
root, 160
Rosser’s extension of Godel’s
Incompleteness Theorem, 221
rule of 1, 162, 186
rule RAA, 162, 186

Russell, B., 18, 230, 233

satisfiable formula, 157
satisfaction, 157
scanned square, 84
segment, 22

initial, 22

proper, 22
self-reference, 243
semantic consequence, 157, 180
sentence, 180

false, 183

invalid, 183

true, 183

valid, 183
sequencing function, Gédel’s, 123
Shepherdson, J. C., 231
sign, 30
simple abacus machine, 67

primitive, 75
simulation, 88
simultaneous primitive recursion, 45
s-m-n theorem, Kleene’s, 131
Smorynski, C., 233
Smullyan, R., 236
soundness, 167
soundness theorem

for predicate logic, 190

for propositional logic, 167
special modular machine, 96
square, scanned, 84
starting state, 86
state, 85

halting, 86

starting, 86
stop instruction, 76
string, 22
strongly expressible set, 216
strongly representable function, 216
structure, 182
Sturgis, H. E., 231
subformula, 153, 180
substitution, 172, 181
subtract instruction, 76
sucessor function, 36
symbols

constant, 174

function, 174

logical, 147, 174

predicate, 174

tape, 84

description, 84

corresponding to &, 88

tautology, 157
term, 175

closed, 175

free for x in ¢, 182
terminal configuration, 76, 85, 96
theorem, 163, 186

Index 243

theory, 203
complete, 204
decidable, 203
recursively axiomatisable, 203
total function, 20
tree, 159
parsing, 152
true sentence, 183
truth, 145, 155
undecidability of, 213
under an interpretation, 184
undefinability of, 215
truth-table, 155
Turing, A. M., 80, 232
Turing computable function, 90, 99
Turing machine, 95
by quadruples, 85
by quintuples, 87, 95
non-deterministic, 85
universal, 95

Ullman, J. O., 234
unary exponential
diophantine set, 111
polynomial, 111
unconditional jump, 78
undecidability
of logic, 212
of number theory, 212
of truth, 213
undecidability theorem, general, 212
undefinability of truth, 215
unique reading lemma
for formulae of predicate logic, 179
for formulae of propositional logic, 151
for terms, 179
universal diophantine predicate, 125
universal partial computable function, 30
universal quantification, 41
universal quantifier, 174
universal Turing machine, 93
unlimited register machine, 76
upward Lowenheim-Skolem theorem, 200

valid sentence, 183

valuation, 155
partial, 157

van Dalen, D., 235

variable, 174
propositional, 147

vertex, 160

witness, 194
Young, P., 234

zero function, 36

w-consistent set, 220

Faux, I.D. & Pratt, M.J.
Firby, P.A. & Gardiner, C.F.
Gardiner, C.F.

Gardiner, C.F.

Gasson, P.C.

Goodbody, A.M.

Goult, R.J.

Graham, A.

Graham, A.

Graham, A.

Griffel, D.H.

Griffel, D.H.

Hanyga, A.

Harris, D.J.

Hoskins, R.F.

Hoskins, R.F.

Hunter, S.C.

Huntley, I. & Johnson, R.M.
Jaswon, M.A. & Rose, M.A.
Johnson, R.M.

Kim, K.H. & Roush, F.W.
Kim, K.H. & Roush, F.W.
Kosinski, W.
Krishnamurthy, V.

Lindfield, G. & Penny, J.E.T.

Lord, E.A. & Wilson, C.B.
Marichev, O.1.

Massey, B.S.

Meek, B.L. & Fairthorne, S.
Mikolas, M.

Moore, R.

Miiller-Pfeiffer, E.

Murphy, J.A. & McShane, B.

Nonweiler, T.R.F.

Ogden, R.W.

Oldknow, A.

Oldknow, A. & Smith, D.
O'Neill, M.E. & Chorlton, F.
O’Neill, M.E. & Chorlton, F.
Page, S. G.

Rankin, R.A.

Ratschek, H. & Rokne, J.
Scorer, R.S.

Smith, D.K.

Srivastava, H.M. & Karlsson, P.W.
Srivastava, H.M. & Manocha, H.L.

Shivamoggi, B.K.
Stirling, D.S.G.
Sweet, M. V.

Temperley, H.N.V. & Trevena, D.H.

Temperley, H.N.V.

Thom, R.

Toth, G.

Townend, M. S.

Twizell, E.H.

Wheeler, R.F.

Willmore, T.J.

Willmore, T.J. & Hitchin, N.
Woijtynski, W.

Computational Geometry for Design and Manufacture

Surface Topology

Modern Algebra

Algebraic Structures: with Applications

Geometry of Spatial Forms

Cartesian Tensors

Applied Linear Algebra

Kronecker Products and Matrix Calculus: with Applications
Matrix Theory and Applications for Engineers and Mathematicians
Nonnegative Matrices and Other Topics in Linear Algebra
Applied Functional Analysis

Linear Algebra

Mathematical Theory of Non-linear Elasticity

Mathematics for Business, Management and Economics
Generalised Functions

Standard and Non-standard Analysis

Mechanics of Continuous Media, 2nd (Revised) Edition

Linear and Nonlinear Differential Equations

Crystal Symmetry: The Theory of Colour Crystallography
Theory and Applications of Linear Differential and Difference Equations
" Applied Abstract Algebra

Team Theory

Field Singularities and Wave Analysis in Continuum Mechanics
Combinatorics: Theory and Applications

Microcomputers in Numerical Analysis

The Mathematical Description of Shape and Form

Integral Transforms of Higher Transcendental Functions
Measures in Science and Engineering

Using Computers

Real Functions and Orthogonal Series

Computational Functional Analysis

Spectral Theory of Ordinary Differential Operators
Computation in Numerical Analysis

Computational Mathematics: An Introduction to Numerical Approximation
Non-linear Elastic Deformations
Microcomputers in Geometry

Learning Mathematics with Micros
Ideal and Incompressible Fluid Dynamics
Viscous and Compressible Fluid Dynamics
Mathematics: A Second Start

. Modular Forms
Computer Methods for the Range of Functions
Environmental Aerodynamics

Network Optimisation Practice: A Computational Guide
Multiple Gaussian Hypergeometric Series

A Treatise on Generating Functions

Stability of Parallel Gas Flows

Mathematical Analysis

Algebra, Geometry and Trigonometry in Science, Engineering and Mathematics

Liquids and Their Properties

Graph Theory and Applications

Mathematical Models of Morphogenesis

Harmonic and Minimal Maps

Mathematics in Sport

Computational Methods for Partial Differential Equations
Rethinking Mathematical Concepts

Total Curvature in Riemannian Geometry

Global Riemannian Geometry

Lie Groups and Lie Algebras

Statistics and Operational Research
Editor: B. W. CONOLLY, Professor of Operational Research, Queen
Mary College, University of London

Beaumont, G.P.
Beaumont, G.P.
Conolly, B.W.

Introductory Applied Probability
Probability and Random Variables
Techniques in Operational Research: Vol. 1, Queueing Systems

Conolly, B.W. Lecture Notes in Queueing Systems

Conolly, B.W. Techniques in Operational Research: Vol. 2, Models, Search, Randomization
French, S. Sequencing and Scheduling: Mathematics of the Job Shop
French, S. Decision Theory: An Introduction to the Mathematics of Rationality
Griffiths, P. & Hill, I.D. Applied Statistics Algorithms
Hartley, R. Linear and Non-linear Programming
Jolliffe, F.R. Survey Design and Analysis
Jones, A.J. Game Theory
Kemp, K.W. Dice, Data and Decisions: Introductory Statistics
Oliveira-Pinto, F. Simulation Concepts in Mathematical Modelling
Oliveira-Pinto, F. & Conolly, B.W. Applicable Mathematics of Non-physical Phenomena
Schendel, U. Introduction to Numerical Methods for Parallel Computers
Stoodley, K.D.C. Applied and Computational Statistics: A First Course
Stoodley, K.D.C., Lewis, T. & Stainton, C.L.S. Applied Statistical Techniques
Thomas, L.C. Games, Theory and Applications

Whitehead, J.R. The Design and Analysis of Sequential Clinical Trials

Daniel Ellis Cohen has been Reader in Pure Mathematics
at Queen Mary College, University of London since 1974,
and was formerly Lecturer at the same College from
1968-74; he was awarded a B.A. in Mathematics (1953),
an M.A,, and a D.Phil. (1955) also in Mathematics, from
Balliol College, Oxford. He has been Secretary (1967-21)
and Vice-President (1971-73) of the London Mathematidai
Society. \

L. L. IVANQV, Institute of Mathematics, Bulgarian Academy of Sciences, and Sofia
University Faculty of Mathematics

Translation Editor: J. L. BELL, London School of Economics

This work is the first comprehensive introduction to an intrinsic algebraic-axiomatic
study of recursion theory, an important branch of mathematical logic with applications in
computer science. It will help advance a better understanding of logic and mathematics,
offering a framework which unifies many diverse notations in a lucid straightforward way.

U. SCHENDEL, Professor of Numerical Mathematics and Computer Science, Freie
Universitat (Free University) of Berlin

Translator: B. W. CONOLLY, Chelsea College, University of London

A concise yet highly informative review of the current status of the design of a new
computer architecture, particularly the parallel processor which has made such an impact
in the facilitation of complex numerical problems. The author’s exposition is clear and to
the point.

G. LINDFIELD and J. E. T. PENNY, Department of Mechanical Engineering, University of
Aston in Birmingham

Covers a wide range of both standard and advanced numerical methods which can be
effectively implemented on a microcomputer or desk top computer. The emphasis is
placed on the practicality of numerical methods, rather than the formal development of
the analysis. Programs for major techniques are described, written in a subset of BASIC
and therefore suitable for most computers. Results for a number of test problems are
included and, where appropriate, comparative numerical studies allow the reader to
assess the relative merits of each method.

R. E. MOORE, Professor of Mathematics, University of Texas at Arlington, USA
‘‘a very readable introduction . . . excellent” — Max Planitz, Division of Mathematics, Thames
Polytechnic, in The Mathematical Gazette

‘‘a stimulating and challenging introduction” — William W. Hager, Pennsylvania State University, in
SIAM Review (USA)

J. A. MURPHY and B. McSHANE, Department of Mathematics, University of Aston in
Birmingham

A carefully-constructed coverage which includes a broad introduction, as well as a
treatment of non-linear equations in one unknown, interpolation, numerical differential
and integration, through to ordinary differential equations and initial value problems.

H. RATSCHEK, Professor at the Mathematisches Institut der Universitat, Disseldorf, West
Germany, and J. ROKNE, Professor of Computer Science, University of Calgary, Canada
Contains descriptions of a wide variety of such methods, based on ideas from interval
analysis, which are characterised by their low computational complexity and their use of
computer implementation. There is an in-depth treatment of questions related to
computing the range of functions, unification of results which have appeared over the last
decade, and coverage of all aspects relating to the centered form.

distributed by

published by HALSTED PRESS a division of
ELLIS HORWOOD LIMITED JOHN WILEY & SONS
Publishers - Chichester New York - Chichester - Brisbane - Toronto

Ellis Horwood Library Edition ISBN 0-7458-nn24 =
Ellis Horwood Student Editi- =

Halsted Press Library Editio

Halsted Press Paperback Ed)

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Notation
	Part I COMPUTABILITY
	1 Epimenides, Godel, Russell, and Cantor
	2 Informal theory of computable functions
	3 Primitive recursive functions
	4 Partial recursive functions
	5 Abacus machines
	6 Turing machines
	7 Modular machines
	8 Church's Thesis and Godel numberings
	9 Hilbert's Tenth Problem
	10 Indexings and the recursion theorem
	Part II LOGIC
	11 Propositional Logic
	12 Predicate Logic
	13 Undecidability and Incompleteness
	14 The natural numbers under addition
	Notes
	Further reading
	Index of special symbols
	Index

